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Abstract 

One of the primary problems with the application of Space-Time Adaptive Processing (STAP) 

techniques is secondary data support for the interference plus noise covariance matrix estimate. 

This estimate is obtained using a Maximum Likelihood Estimator (MLE). As always in the case 

of a statistical estimator, the larger the number of points, or secondary data support, used in the 

calculation the more accurate the estimate. 

Reed [15] has shown the required secondary data support in this estimate to achieve perfor- 

mance within 3 dB of the optimal signal-to-interference-plus-noise ratio (SINR) is approximately 

two times the Degrees Of Freedom (DOF). Hence, reducing the DOF used in the adaptive algo- 

rithm also reduces required secondary data support. Reed developed this rule for Sample Matrix 

Inversion (SMI) STAP techniques. 

A concern arises when applying this rule to a class of newer STAP methods designed to 

reduce the DOF. An example of one of these newer methods is the Cross Spectral Metric (CSM) 

algorithm [6]. Since the CSM algorithm does not fall under the SMI classification, application of 

Reed's rule for required secondary data support is brought into question. In an effort to answer this 

question, extensive Monte Carlo experiments were performed. These experiments have resulted in 

a number of interesting conclusions. 

When using full dimensionality (all DOF), the CSM algorithm performs as predicted by 

Reed's rule. However, when reducing the DOF the required secondary data support does not 

follow Reed's prediction. Optimal SINR performance is obtained only when the DOF are equal to 

the dimension of the interference subspace. Furthermore, there is a threshold below the dimension 

of the interference subspace where reducing the DOF does not gain any reduction in secondary 

data support. 

A second goal of the thesis determines the impact of non-homogeneities within the secondary 

data on the CSM algorithm. The Generalized Inner Product (GIP) detection scheme is then used 

to excise these non-homogeneities from the secondary data. The CSM algorithm was found to 

be susceptible to non-homogeneities. The use of the GIP successfully negated the impact on this 

algorithm. 

xix 



Secondary Data Support and Non-Homogeneities 

in 

Space-Time Adaptive Processing 

I.   Introduction 

1.1   Background 

Clutter and jamming are serious problems for airborne radar engineers. Historically, the elim- 

ination of clutter has been accomplished through very low antenna sidelobes, an expensive and dif- 

ficult proposition in the case of airborne radars. Furthermore, Electronic Counter-Countermeasure 

(ECCM) techniques currently implemented in radars are reactionary, meaning they are relegated 

to respond defensively instead of offensively. Space-Time Adaptive Processing (STAP) promises 

an inexpensive alternative capable of filtering clutter and allowing an offensive approach to jam- 

ming by removing it before the radar processes the return. STAP refers to adaptive filtering of 

antenna array inputs in both the spatial and temporal domains to suppress the effects of clutter 

and jamming. Current research shows it is an effective approach that significantly improves the 

performance of an airborne radar. 

STAP is a digital filtering technique applicable to any antenna array and holds the potential 

to significantly improve radar performance at minimal cost. The mission of Rome Laboratory (the 

sponsor of this research project) is to provide cost effective solutions to the technological problems 

of the Air Force. STAP fits perfectly into their mission. This research also supports the broader 

Air Force goal to bring effective weapon platforms to the battlefield while minimizing cost. 
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1.2    Objective 

Although there are a variety of STAP techniques available, each with their own strengths 

and weaknesses, all of these techniques rely on the statistics of the interference and clutter, or the 

interference covariance matrix R. The widely varying clutter and interference characteristics of an 

airborne environment effectively prohibits prediction of these statistics. The interference covariance 

structure must be estimated from secondary data available within the radar's Coherent Processing 

Interval (CPI). 

This thesis focuses on a method of STAP just recently introduced. The Cross Spectral Metric 

(CSM) algorithm [6] results in an adaptive choice of the Degrees of Freedom (DOF) that result 

in optimal SINR. The cross-spectral metric approach was developed by Goldstein and Reed [8] as 

an alternative to the method of principle components. Chapter IV discusses these approaches in 

more detail. Because of the methods used to determine the optimum DOF, there is some question 

as to the secondary data support required to effectively estimate the covariance structure of the 

environment. This research effort attempts to answer this question. 

Once the required secondary data support has been determined for the CSM algorithm, the 

thesis progresses to another problem prevalant in all STAP algorithms. If a target or some other 

non-homogeneity is present within the secondary data, the covariance matrix estimate is distorted. 

Depending on the severity of the non-homogeneity in the secondary data, this estimate can distort 

the antenna pattern produced by the STAP algorithm. This research project illustrates the impact 

of secondary data non-homogeneities on the CSM algorithm. 

In an effort to alleviate the effect of these non-homogeneities, Melvin [14] has proposed a 

non-homogeneity detection scheme. Detection is performed through the use of a Generalized Inner 

Product (GIP). He has shown the improvements gained through its use for the reduced dimension 

Factored Time-Space (FTS) approach [14]. As a final objective, this research applies the GIP 

detection scheme to the CSM algorithm. MATLAB® is used to explore these alternatives. 
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1.3 Material and Equipment 

All simulations were developed and performed using MATLAB® versions 4.2c and 5.0, a high 

performance numeric computation and visualization software optimized for matrix operations. The 

software was operated on Sun Workstations provided by the Air Force Institute of Technology. 

1.4 Support 

Capt William L. Melvin, Rome Laboratory, Griffis Industrial Park, NY served as the point of 

contact for this thesis. Many thanks go to Rome Laboratory for allowing the use of Multi-Channel 

Airborne Radar Management (MCARM) data. This data represents real world collections from 

an antenna array using the MCARM airborne radar platform. Readers interested in more details 

should reference the final technical report [18]. 

1.5 Organization 

This document serves to evaluate required secondary data support for the CSM algorithm and 

the impact of non-homogeneities among secondary data used for interference plus noise covariance 

matrix estimation. In order to present a coherent approach, the fundamentals of beamforming and 

STAP are first explored. Chapter II delves into the signal processing viewpoint of antenna array 

beamforming. The basic concepts used in the STAP development are derived and discussed there. 

Chapter III develops the basics of STAP in parallel with Ward [21]. Both fully adaptive 

and partially adaptive algorithms are introduced. Because of the computational burden associated 

with fully adaptive STAP, this algorithm is beyond current computing capabilities for real time 

operation in an airborne platform. Although there are many reduced dimension STAP algorithms 

available, this chapter only introduces the Factored Time-Space (FTS) method. The FTS method 

is simple to implement and effectively introduces the advantages of reduced dimensionality with 

respect to the computational load of STAP. 
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Chapter IV is devoted to developing an understanding of Goldstein's [8] Cross Spectral Metric 

(CSM) algorithm. The CSM is introduced as a means of selecting an optimum dimension reduction 

matrix used to reduce the DOF and indirectly the secondary data support. 

The final set of background information necessary is a complete discussion of the Generalized 

Inner Product (GIP) non-homogeneity detector [14]. Chapter V not only introduces this detection 

scheme but also presents a comprehensive example of its application to the FTS algorithm using 

MCARM data. 

The analysis of the CSM algorithm is contained in Chapter VI. There are two major questions 

answered in this thesis. The first is in regard to sample support required for the CSM model. Monte 

Carlo simulation is employed to answer this question. The second question of interest involves 

application of the GIP non-homogeneity detector to the CSM model. The goal is to determine if 

performance is improved. 
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II.   General Beamforming Concepts 

2.1 Introduction 

People are bombarded with plane waves every day, but the average person doesn't think of 

them in this manner. The greeting from a friend in the distance is carried on a plane wave, an 

acoustic wave in this simple example. The visual image of that friend is carried on plane waves from 

a relatively small portion of the electromagnetic spectrum. Extending these interpretations, radar 

and sonar become simple extensions of the basic human sensory organs. They give us the ability 

to make use of portions of the electromagnetic spectrum beyond our own physiological limitations. 

This first chapter introduces a mathematical model for these waves from basic electromagnetic 

principles. It then highlights the functional similarities between the expressions developed using 

this model and an expression for the multidimensional Fourier transform. This similarity shows 

the applicability of multidimensional signal processing in the analysis of these signals, referred to 

as space-time signals. Beamforming and Space-Time Adaptive Processing (STAP) are found to be 

ideal methods to "analyze" these signals and extract the information of interest. 

This chapter follows closely the development by Dudgeon and Mersereau [5, pages 289-303]. 

The chapter lays the groundwork for the later concepts of STAP. 

2.2 Foundations 

The mathematical representation for a propagating plane wave from electromagnetic funda- 

mentals is in terms of a complex exponential, 

s(x,t)    =   e*(«-*-k--*) 

=   <>°('-%f), (2.1) 

2-1 



where the variable w0 represents the temporal frequency of the wave and the vector k0 designates 

the direction of the propagating wave and its spatial frequency. The dot product in the expression 

represents the inner product between the two vectors and can also be written as 

k^x, (2.2) 

where the superscript T represents the transpose operation. The spatial frequency vector can be 

described by 

k0 = ^k, (2.3) 

where A0 is the nominal wavelength of the propagating wave (equal to j^, where c is the velocity 

of propagation and f0 is the transmitted frequency) and k is a unit vector in the direction of the 

propagating wave. The form of Eqn. (2.1) results in the definition of a new parameter a, 

lW_sec\ (2i4) 
w0 Vmeter/ 

where the units of this new quantity are the inverse of velocity. Hence, it is justifiably called 

the slowness vector. The 0 subscript depicts the slowness vector is in the direction of interest, or 

reference direction. Generically, the slowness vector is written without the subscript. The plane 

wave expression describing a signal propagating in the direction of interest written in terms of the 

slowness vector then becomes 

s(x,t) = eM>(<-°°-*). (2.5) 

The slowness vector a0 not only describes the speed of the wave, l/|a0|, but also it's direction. 

The plane wave expression can be written generically as a function of the speed of the wave and 
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direction by dropping the subscript on a. and u>, 

a(x,t) = e^'-a-x). (2.6) 

Examine the standard Fourier transform definition as shown by 

/oo 

a(t)e-tfn-*>dt 
-00 

/oo 

«(ti,*2,... ,tn)e-^n^+n^+-+Unt^dt1dt2...dtn. (2.7) 
■oo 

The expression illustrates a conflict with the sign in the exponential and our knowledge of propa- 

gating waves, i.e. this representation does not match the sign convention normally used to represent 

the direction of a propagating plane wave. 

To match this convention, the Fourier transform is redefined. The 4-D case (using the prop- 

agating plane wave as the argument) becomes 

/OO        />00 

/     5(x,*)e-J'(""-k-x>dxdi. (2.8) 
■00 J — 00 

Notice the sign is only changed on the position term, x. The equation now correctly reflects the 

direction of the plane wave from basic electromagnetics. 

2.2.1 Wavenumber-Frequency Space. The (k,w) space obtained from the Fourier trans- 

form is referred to as wavenumber-frequency space. The vector k is the wavenumber vector. This 

vector represents the spatial frequency of the wave, while a> represents the familiar temporal fre- 

quency. Applying the 4-D Fourier transform to the propagating plane wave of Eqn. (2.1) uncovers 

an important property of the frequency spectrum of plane waves.   The sequence of operations 
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uncovering this property is 

/OO      rOO 

/       ei(Wot-k,,.Jc)e-i(art-k.x)(fiK(ft 

-CX) ./—OO 

/OO       />00 

/     e-i^-^dt e-J'(k»-k)'x dx 
■00 •/ — 00 
/OO 

6(u-u>0)e-j(*°-k>xdx 
■00 

/OO 
e-j(k0-k).xdx 

-00 

=   S{u-u0)6{ko-k). (2.9) 

This is a four dimensional impulse at k = k0 and u = <J0. Therefore, every point in (k,w) space 

corresponds to a plane wave in (x,t) space with a particular direction and frequency. For this 

reason, antenna beamforming lends itself directly to multidimensional signal processing. Designing 

a bandpass filter in wavenumber-frequency space transforms back to space-time as an antenna beam 

passing only the propagating waves with a particular direction and frequency. 

2.2.2 Space-Time Signal Decomposition. Another important concept involves the de- 

composition of a signal in (x, t) space. Any space-time signal s(x, t) can be decomposed into a 

superposition of propagating plane waves. This is shown by the 4-D inverse Fourier transform, 

s(x,t) = -—i /     S(ktU)^-^dkdu, (2.10) 
\*n) J-ooJ-oo r;   *r~ 

Plane Wave 

where 5(k, w) is the 4-D Fourier transform of the space- time signal s(x, t). Notice the exponential in 

the expression exactly resembles the expression for the propagating plane wave given in Eqn. (2.1). 

S^k, w) is viewed as the complex magnitude of each individual plane wave. The integrals basically 

sum all of the individual propagating plane waves in each direction to form the space-time signal, 

s(x,t). 
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Figure 2.1 Wavenumber-Frequency 
space representation of space-time 
signals with the same frequency. 

Figure 2.2 Wavenumber-Frequency 
space representation of space-time 
signals with the same velocity of 
propagation. 

u 

different direction 

IGx 

Figure 2.3 Wavenumber-Frequency 
space representation of space-time 
signals with the same direction of 
propagation. 

2.2.3 Wavenumber-Frequency Space Translation. Using the fundamental ideas just ex- 

plained, the plots shown in Figs. 2.1 through 2.3 help illustrate how the (k,w) space relates back 

to (x, t) space. These figures ignore spatial frequency in the z direction (kz from the wavenumber 

vector) in order to allow representation in three dimensions. 

To see how these plots are related, examine the relationship between velocity of propagation, 

temporal frequency, and spatial frequency. Looking at the units is the easiest way to understand 

the relationship between these three quantities, 

vv = 
u)  (meters\ 
|k| \   sec I' (2.11) 
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Holding the temporal frequency constant without any constraint on the velocity of propaga- 

tion or direction of the wave results in a horizontal plane in wavenumber-frequency space. This 

is shown in Fig. 2.1. Forcing the velocity of propagation to be constant as in Fig. 2.2 results in 

a cone. As the temporal frequency u> increases, the magnitude of the spatial frequency must also 

increase at the same rate in order for the velocity of propagation to be constant. Hence, the area 

of wavenumber-frequency space described by this relationship is the surface of a cone. 

The final relationship of interest is signals propagating in the same direction. These translate 

to the space shown in Fig. 2.3. The direction of the signal is described by the wavenumber/spatial 

frequency vector k. The direction of the vector is the same as long as it's individual components are 

all operated on in a like manner. Any increase in kx must have a corresponding increase in kv (the 

ratio remains constant). Therefore, one direction of propagation is described by a vertical plane 

(no temporal frequency restriction) in wavenumber-frequency space. The plot shown illustrates two 

different directions. 

The intersections of these plots give a visual interpretation to the signal processing aspect of 

beamforming. The object of beamforming is to eliminate undesired signals and focus only on signals 

of interest. Generally the desired signal is one of a particular direction, velocity of propagation, 

and/or frequency. Signals with the same velocity of propagation and direction lie along a line 

formed by the cone and vertical planes shown in Fig. 2.2 and 2.3. This line can be interpreted as 

a bandpass filter as shown in Fig. 2.4. By also choosing a frequency, this intersection line collapses 

down to a point. In radar, frequency is generally of no concern since a typical radar system is 

trying to receive the "echos" from its own transmission. The existing roll-off of the amplifiers is 

usually adequate to remove undesired frequency components. 

In summary, let us translate some of the basic ideas to practical concepts. The position 

vector x represents a three dimensional array of antennas used to spatially sample the signal. The 

signal applied to each antenna element (used synonymously with receiver) is the spatially sampled 
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Figure 2.4     The intersection of the constant velocity of propagation cone and the 
directional plane in wavenumber-frequency space. 

signal s(xi,t), where i denotes the antenna element. Temporal (time) sampling provides the final 

dimension. Superposition allows the space-time signal to be broken down into a sum of individual 

plane wave components, each of a particular frequency and direction. The appropriate bandpass 

filter removes undesired signal components. 

2.3    Weighted Delay and Sum Beamformer 

The objective of beamforming is to isolate signals propagating in the same direction. Fig- 

ure 2.5 graphically illustrates the idea of forming a beam or passband in the direction of the target. 

Undesired signals are attenuated by the roll-off of the antenna pattern. Ideally, the beamformer 

passes the desired target (direction and speed represented by the slowness vector a0) and totally 

rejects the undesired signals. 
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Undesired Signal 

Target Signal 

Antenna Beam 

Undesired Signal 

Figure 2.5     A block diagram of the signal environment. 

Assuming all waves propagate at the same speed, the beamformer becomes the intersection 

of the cone in Fig. 2.2 and the vertical plane in Fig. 2.3. This describes signals of any frequency 

constrained to a particular direction and velocity of propagation. The assumption of a constant 

velocity of propagation vp is valid in the discussion of radar since the wave is propagating in 

free space, generally assumed a homogeneous medium. The wavenumber-frequency space diagram 

depicting this is shown in Fig. 2.4. The dashed lines on each side of the intersection line represent 

the passband of the beamforming filter. 

As mentioned at the end of the previous section, the directional vector x is interpreted as the 

location of the antenna elements. For an antenna consisting of N elements, each element position 

is described by a separate vector x*. The diagram in Fig. 2.6 shows the antenna elements lined up 

in the y direction, the convention to be used in this chapter. Assuming these elements are spaced 

equal distances apart, the position vector describing each element location becomes 

Xj = idy for i = 0 : N - 1, (2.12) 
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Figure 2.6     Block diagram of the weighted delay and sum beamformer. The out- 
put of the beamformer as a function of time is designated bf (£). 

where d is the interelement spacing. The reference element is assigned the zero position in the 

coordinate system, referred to as element zero. Using this notation, the received signal (denoted 

ri(t)) from each element becomes s(xi,t), the space-time signal sampled at position x*. 

The block diagram in Fig. 2.6 also shows a weight applied to each received signal. At this 

point in the derivation the weight is taken to be a real valued constant for each element, although 

not constrained to the same value for every element. Complex weights are time delays and hence 

are constrained to the delay blocks. Without any delays on the elements, the beam is perpendicular 

to the face of the antenna array (the x direction). However, placing individually selectable complex 

exponential weights (time delays) after each antenna element steers the beam. The sum and 1/N 

blocks after the weight and delay blocks serve to average the signal received from each element. 

Called the weighted delay and sum beamformer, this beamformer's name is a direct derivative of 

its elements of operation. 

2.3.1 Beam Steering Through Time Delays. The delay concept is simple. A plane wave 

propagating in some direction other than perpendicular to the array arrives at different times 

on each element. Applying the appropriate delay in each element's path before summing all the 
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signals together allows a reference point on the signal to be in phase at the sum block. Hence, 

it adds constructively and produces a large output from the beamformer. However, a plane wave 

propagating in a different direction experiences phase differences when it reaches the sum block. A 

weak beamformer output signal bf(f) results from the destructive addition. Delays, n, given by 

n = -a0 • xt (2.13) 

pass waves in the direction of the slowness vector [5, page 294]. 

For example, examine the diagram in Fig. 2.7. Drawing a reference line perpendicular to 

the direction of the propagating wave and based at element zero shows the increase in distance a 

reference point on the wave travels to reach element one. The time to travel this distance is the 

negative delay required in element one. Calculating this delay is simply a matter of dividing the 

distance traveled by the velocity of propagation. In this simple example, all of the elements are 

lined up vertically (y direction) and equally spaced. Therefore, once the required delay for element 

one is found the rest of the delays are integer multiples of it. 

Given d as the distance between the elements, the additional travel distance o (see Fig. 2.7) 

is 

a = dcos(6). (2.14) 

The velocity of propagation is the temporal frequency of the wave multiplied by the wavelength, 

c = f0X. (2.15) 
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Figure 2.7     Calculation of the delay required in each element to steer the beam. 

Therefore, the delay required in element one for the reference point to arrive simultaneously at the 

sum block from elements zero and one is 

a 
c 
dcos(8) 

2ndcos(6) 
' A    2TT/0 

dcos(0) 

Un 

2TT 

Spatial Frequency 
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Recognizing the spatial frequency term, the equation becomes 

T     =     -]*£idcOB(0) 

=   —|ao|dcos(0) 

=   -a0-Xi, (2.16) 

where the final step shows the dot product between the two vectors (the same as a vector multi- 

plication) and gives the expression provided by Dudgeon and Mersereau [5, page 294]. Examining 

the element position vector (i = 1 for element one) in this example, 

xt = [ 0 id Of, (2.17) 

shows how the dot product of Eqn. (2.16) collapses to the expression on the previous line. 

Obviously, a negative time delay is actually an advance and hence not possible in the real 

world. Adding the absolute value of TJV_I to all of the delay blocks produces the more conventional 

notion of a positive time delay. In this case, TN-I becomes the delay block equal to zero instead of 

TO- 

2.3.2 Antenna Array Pattern. Examination of the weighted delay and sum beamformer 

block diagram in Fig. 2.6 allows a derivation of a mathematical expression for the output. The 

beamformer output is expressed as 

1   N-l 
bfw = ivE^e-7*)' (2-18) 

where Ti(t — n) is the received signal sampled at a particular position Xj. Assuming the incoming 

signal is a single plane wave, then (using the plane wave expression from Eqn. (2.5) and the delay 
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expression from Eqn. (2.13)) the beamformer output becomes 

1 *_1 

bf(t)    =    — ]T W{s(xi,t + a0-Xi) 
i=0 

1   N~1 

i=0 

JV-1 

i J2 Wiej"(a°-a>Xiejut 

N    ■    n 1=0 

JV-l 

=    TJ 5Z «'*e-^k-'"0,»)-x' e*"*, (2.19) 
^ ■ „ 1=0 

W(k-ua0) 

where, the underbraced term is defined as W(k — u)a0), the antenna array patern [5]. 

The above development of the antenna array pattern assumed the space-time signal consisted 

of only one propagating wave. However, we have already shown the space-time signal is composed 

of many plane waves (see Eqn. (2.10)). Using this more general case, the received signal becomes 

Eqn. (2.10) evaluated at x* and the necessary beam steering delay from Eqn. (2.13), 

Ti{t-Ti)     =     s(Xi,t-Ti) 

=    T—rj /      /     S(k,u)e-j(k-ua°>Xiejutdkdw. (2.20) 

Substituting this equation into the generic expression for the delay and sum beamformer (Eqn. (2.18)) 

results in 

1 JV_1      f    1       f°°   f°° 1 bfW ^E^feL J^ S(k,u>)e-&-ut">*'el'>tdkdUj . (2.21) 
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Rearranging the order of the summation and integral highlights the expression for the antenna 

array pattern, 

1 />oo     />oo ( i   AT-1 1 

bf("= (s?/-J-„Ä(k'"){^SK"i"'"'"""'>' r ""'" 
1 /»OO       i»00 

=    7^-ü /     5(k>W)W(k-a;o0)e*w*dkdw. (2.22) 

Examine the response of the weighted delay and sum beamformer for a space-time signal with 

all components propagating in the same direction. The space-time signal becomes 

s(x,t) = v(t-a-x) (2.23) 

for the signal v(t), where the component -a ■ x is the time delay from Eqn. (2.13). As before, a 

represents the direction of the incoming signal and a0 represents the steered direction of the beam. 

The Fourier transform of the incoming signal (as defined to correctly reflect the direction of a plane 

wave) involves using the time shift property, 

/OO 1-00 

-OO •/—OO 

/OO /-OO 

/ v(t-a- x)e-XB'-fcl) dxdt 
-OO J—oo 
/OO /<00 

/ v(t-a-x)e-jutejk-xdtdx 
-OO J — oo 
/OO 

e-j(W«-k).xdx 

-OO 

=   V(u)S(ua-k). (2.24) 

This shows the (k, LS) space of a propagating wave is a single point. 

Expressing the beamformer output as a function of the space-time signal with all components 

propagating in the same direction shows the effect of the antenna array pattern. The sifting property 
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of the delta function greatly simplifies the mathematics involved in reducing the expression, 

1 /»OO       pOO 

M(t)    =    77TTÄ /     V(oj)S(ua--k)W(k-ua0)eju'tdkckj 
(27T)4 j_00 y.oo 

=    77" /     V(u>)W(u(a-a0))e
lu,t(kj. (2.25) 

27T y_oo 

If the steered beam direction is the same as the direction of the incoming signal, a = a0, then the 

above integral collapses to the inverse Fourier transform of the original signal, V(OJ), multiplied by 

a constant, 

bf(t)    =    ^^ r V(u)ejut dw 
27r     J-oo 

=   W(0)v(t). (2.26) 

As expected, the signal is undistorted. If a ^ a0, then the antenna array pattern attenuates the 

signal. Therefore, W(k — ua0) can be viewed as the antenna pattern. 

2.3.3 Linear Antenna Array Example. As an example of the computation of an antenna 

pattern for a weighted delay and sum beamformer, consider a linear antenna array with N elements 

aligned vertically (y direction). Given the weights w are uniform and real valued for all of the 

antenna elements, calculate the antenna pattern. Assume the antenna elements are equally spaced 

a distance d apart and the beam is steered toward the direction k0. 
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First, we'll determine the delays necessary at each element to steer the beam in this direction. 

Referencing Eqn. (2.13) gives 

Ti        — OLn * Xj 

-UJoko • Xj 

=    -u0 [kox koy koz] [0 id 0]T 

=    —idu)ok0y = —ida0y   for i = 0 : N — 1. 

Finding a closed expression for the antenna array pattern is merely a matter of manipulation. 

The antenna pattern for the steered antenna beam given u = u>0 such that u>a0 = u0a0 = k0 is 

1 N~1 

W(k - k0) = — ]£ Wie-^k-k°)-Xi. 

Substituting the values in the exponential argument and simplifying results in 

JV-1 w 
W(k - k0)    =    j- Y, e-^kv-k°^id 

w 1 - (e-Xkv-k°v)d)N 

~    jv    1 — e-^kv-k"v)d 

ID  \ — 0    JvAv     K0y)afy 

N   1 — e-J{ky-koy)d 

w e-j(kv-kov)dN/2 eJ(kv-koy)dN/2 _ e-j(kv-k„v)dN/2 2j 

~     N   e~^ky~k°v)d/2      eJ(kv-kov)dl2 _ e-j(.ky-kov)d/2     2j 

=    w sm((ky - koy)dN/2)c_i(^_k„M(N_iy2 

N sin((ky - koy)d/2) 

A plot of the magnitude for this beamformer (with w = 1 and k0 = 0) is shown in Fig. 2.8. 

Examining the arguments of the sine terms shows the pattern is periodic in 2n/d radians/meter. 
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Figure 2.8     Antenna pattern magnitude for the weighted delay and sum beam- 
former, 10 elements spaced 0.1m apart, and no beam steering. 

The first null occurs at 2ir/(Nd).  The repeated main lobes are called grating lobes.  Figure 2.9 

illustrates steering the beam to the koy = n/d direction. 

2.3.4 Beam Shaping Through Windowing. The weights in the beamformer perform the 

function of a multidimensional filter window. In the example above, the constant valued weights 

correspond to a one dimensional rectangular window, explained pictorially by Fig. 2.10. The window 

affects the width of the mainlobe and the level of the sidelobes. Ideally, the antenna pattern should 

be a delta function, i.e. a mainlobe of infinitesimal width and no sidelobes. This translates to the 

ability to pick out targets no matter how close together they are. However, this is not physically 

realizable. Using the rectangular window in the previous example produced a reasonably narrow 

mainlobe resulting in the antenna receiving a small range of directions at the expense of higher 
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Figure 2.9     Antenna pattern magnitude for the weighted delay and sum beam- 
former, 10 elements spaced 0.1m apart, with beam steering. 
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Figure 2.10     Pictorial representation of one dimensional rectangular and Ham- 
ming windows used for the receiver weights. 

sidelobes (reference Fig. 2.8). The advantage of the rectangular window is simplicity through 

weights of constant value, shown by the relatively simple expression developed for the antenna 

pattern in the previous example. 

Other windowing options include the Hanning, Hamming, Bartlett, Kaiser, Chebyshev, and 

Gaussian windows. The expression for the weights using the one dimensional Hamming window [16, 

page 183] is 

Wi = 0.54 + (1 - 0.54) cos (£«-*/») (2.27) 

2-19 



Antenna Array Pattern 
T 

Figure 2.11     Hamming window applied to the weights of a linear antenna array 
of 10 elements space 0.1m apart. 

The shift on the cosine term is added to center the window on the receiver array. The derivation 

for the previous linear antenna array example using a Hamming window for the weights is 

JV-l 

W(k - k0)    =    -^ Y^ wie-
j(k-k°>Xi 

= jf E {°-54+o- - °-54)cos (f (»- */2))} e~j{ki RoyJ'&iy 

Due to the more complicated element weighting, the equation cannot be simplified as in the 

rectangular window case. Figure 2.11 shows the plot of this expression. Comparing this with 

Fig. 2.8 highlights the trade-off between a narrow mainlobe and low sidelobes. Also notice the loss 

in mainbeam gain. 
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Two dimensional windows can be applied to the weights to control the antenna pattern of a 

rectangular antenna array. There are also windowing techniques applicable to a hexagonally spaced 

array, corresponding to a hexagonal sampling lattice in the spatial domain. As long as the antenna 

array is on a periodic grid, the design of the antenna pattern using multidimensional niters is rather 

straightforward. However, nonuniform sampling significantly increases the difficulty in designing 

the receiver weighting function. 

2.4    Summary 

In this chapter, the fundamental concepts of beamforming were introduced. The introduction 

of the plane wave model and antenna beamformer development showed the relevance of signal 

processing techniques. The wavenumber-frequency plots illustrated the fundamental relationships 

between the wavenumber-frequency and space-time domains. 

Prom these basic ideas, the weighted delay and sum beamformer was developed and exam- 

ined. This beamformer serves as an excellent introduction to antenna arrays. Using a linear array 

example, the antenna pattern was derived and examined. The receiver weights were designed using 

windowing/signal processing techniques. The use of a different window was shown to reduce the 

sidelobes of the antenna pattern, at the expense of mainbeam width and gain. It should be noted 

the weighted delay and sum beamformer can be further generalized by allowing the filter weights 

to depend on frequency. This configuration is referred to as the filter and sum beamformer. 

All of the equations to this point treat time as a continuous variable. Implementation of a 

beamforming system with digital hardware necessitates sampling the signal temporally. One issue 

brought forth by the sampling operation is a distortion of the array pattern when the time delays 

used to steer the beam are not multiples of the sampling period. Dudgeon and Merserau [5, pages 

303-307] discuss this in more detail. 
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III.  Space-Time Adaptive Processing Primer 

3.1   Introduction 

Airborne radars hold many advantages over ground based radars, however they also suffer 

several disadvantages. Higher clutter levels due to steep aspect angles to the ground make it difficult 

to detect and track low flying targets. Airborne radars are also hindered by the constant motion of 

the airborne platform relative to the ground and the changing terrain, adding a variable nature to 

the clutter returns. The typical airborne radar environment consists of spectrally variable ground 

clutter in both the mainlobe and sidelobes of the radar and also interference due to jammers. The 

aircraft velocity adds Doppler spreading to returns processed by the radar. 

Radar engineers have made numerous attempts to improve the detection capabilities of air- 

borne radars. One of the most common is to reduce the effects of clutter through the use of lower 

sidelobes. However, practical limitations of most antenna designs limit this to the order of only 

-30 to -40 dB, allowing Doppler spread sidelobe clutter returns to be strong enough to completely 

mask low-observable targets [12]. Although antennas with lower sidelobe levels are achievable, the 

costs associated become prohibitive. Also, lower sidelobes do not offer any gains in the ability to 

detect a target amid jamming. 

Another option is non-adaptive filtering. In a ground based radar, reasonably constant clutter 

patterns allow non-adaptive filtering. However, the Doppler spread and variable nature of the 

clutter in airborne radars make this option better suited for other applications. 

In the last decade, improvements in digital technology make adaptive filtering algorithms very 

attractive. An adaptive filtering algorithm can have significant impact on radar performance both 

amid clutter and jamming. Not only is target acquisition improved, but the overall design of the 

radar is affected. For example, the ability to filter sidelobe clutter reduces the need for extremely 

low antenna sidelobes. Another example is the Pulse Repetition Frequency (PRF) design trade-off. 
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Typically the PRF is chosen to help eliminate the effects of clutter, if clutter can be minimized 

through the use of filtering, the PRF can be chosen to give the radar more unambiguous range. 

Space-Time Adaptive Processing (STAP) refers to this class of adaptive filtering algorithms. 

Using digital beamforming concepts, STAP is denned by Ward [21] as the simultaneous combination 

of signals from the elements of an array antenna (the spatial domain) and the multiple pulses of 

a coherent radar waveform (the temporal domain) to suppress interference and provide target 

detection. STAP is inherently an extension of digital beamforming architecture and principles. 

Chapter II introduced the basics of beamforming and serves as the foundation for the prin- 

ciples encountered in this next development. As explained, the beamforming operation occurred 

through the use of weights on each antenna element. The output of the summed and weighted ele- 

ments resulted in a single data stream containing signals from propagating waves in the direction of 

interest. STAP differs from basic antenna beamforming in that no weights are used on the elements 

themselves. The received space-time signal from each element is stored for later processing. The 

weighting functions are applied as part of the processing algorithm. 

The development begins by denning the radar geometry. Models are introduced for noise, 

jamming, and clutter along with the target return signal. The nomenclature and architecture of 

STAP is introduced as the development progresses. Chapter II concepts are tied together to form 

these models. Ward's [21] work is the basis for the developments in this chapter. 

3.2    The Physical and Electromagnetic Environment 

3.2.1 Physical Geometry. The radar antenna array for all examples in this chapter is 

assumed linear with uniformly spaced elements a distance d apart, each with their own receiver. 

The orientation of the array is along the x-axis, as shown in Fig. 3.1a. Therefore, the vector to the 
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Figure 3.1      (a) Uniformly spaced antenna element array geometry and (b) radar 
platform geometry. 

first antenna element is 

d = dx, (3.1) 

where x is the unit vector in the x axis direction.  Using this expression, the vector to the nth 

element is 

rn = nd. (3.2) 

As used in Fig. 3.1b, the vector v0 shows the magnitude and direction of the platform velocity. 

This figure also shows the corresponding radar platform geometry. 

The unit vector k(<£,0) shown in Fig. 3.1b represents the direction to a point of interest 

(or target). This direction corresponds to the direction of k, the spatial frequency vector from 

Chapter II, see Eqn. (2.1). The angular variables (j> and 6 respectively represent the azimuth and 

elevation to the point of interest (target, clutter, jammer, etc.). The relationship of Ward's [21] 

coordinate system to the Cartesian coordinate system is described by 

k(0,6) = cos 6 sin <f>x + cos 8 cos <f>y + sin 6z, (3.3) 
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where y and z again represent unit vectors along the Cartesian coordinate system y and z axes. 

3.2.2 Signal and Radar Description. Now that the physical geometry of the radar is 

denned, let us examine the electromagnetic properties of the radar. The radar is assumed to be 

Pulse Doppier (PD), therefore target velocity information is available to the processor. 

The sinusoidal waveform transmitted by the radar is modeled mathematically by 

s(t) = atu{t)efla'i+*\ (3.4) 

where the complex exponential and random phase shift ij> represent the sinusoidal carrier, a< the 

transmitted pulse amplitude, and u(t) the envelope function. The envelope function defines the 

pulse width and Pulse Repetition Interval (PRI) characteristics. A series of individual pulses 

summed to form the pulse train of the radar defines the envelope function, 

Af-1 

u(t) = ^2 up(t - mTr). (3.5) 
m=0 

The fundamental pulse is time shifted by multiples of the PRI, Tr. The summation of a finite 

number of terms, M, shows the Coherent Processing Interval, or CPI. This expression implicitly 

defines M as the number of pulses in the CPI. 

One should be careful to distinguish between the coherent processing interval and the coherent 

integration time. We will find later that the output of the STAP algorithm is described by y = wHx, 

where w is the adaptive weight vector and x is the incoming space-time snapshot (discussed later 

in detail). This expression indicates the coherent integration time since the inner product of the 

weight vector and space-time snapshot is simply the weighted sum of the incoming data samples, 

a form of integration. 
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The CPI defines how much data the adaptive processor uses in determining the adapted 

pattern. Obviously, a smaller CPI allows rapid modifications to the antenna pattern in response 

to the changing environment. However, making it too small does not give the processor enough 

information about the statistics of the environment, producing poorly formed antenna patterns. 

Making the CPI too large results in slow response. This is one of the primary design considerations 

in a STAP system. 

The transmit signal amplitude at is defined to capture the energy in the pulse. Therefore, 

the fundamental pulse energy Eu is normalized to one, 

Eu= f r \up(t)\2dt = 1. (3.6) 
Jo 

Consequently, the total energy transmitted in a single pulse Ep meets the definition for at, 

Ep= [' \~s{t)?dt = al (3.7) 
Jo 

From this expression, the energy within one CPI is easily determined by integrating over the 

CPI length. Since the focus of STAP algorithms is the response and pattern after one CPI, it is 

customary to consider only the signal transmitted within one CPI as being the entire transmitted 

signal. Hence, the energy within one CPI is synonymous with the transmitted signal energy Et, 

fMTr 

Et= \s(t)\2dt = Ma\ = MEP. (3.8) 
Jo 

The signal received by each individual antenna element is the transmitted signal (Eqn. (3.4)) 

with a time delay from the target to the nth element, T„, and a Doppler shift ft due to the target's 
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relative velocity vt between the target and the platform, ft = 2vt/\0,
1 

sn(t) = s(t - rn)e
J'2,r*(*-T"). (3.9) 

Inserting the transmitted pulse expression gives 

sn(i) = aru(t-rn)eJ2'r-f°(t-r»)ej2,r/'('-T")e^) (3.10) 

where ar represents the received pulse amplitude. This parameter is introduced because the atmo- 

sphere and Radar Cross Section (RCS) of the target attenuate the amplitude of the pulse, hence it 

is typically much less than at. 

If the Doppler shift is greater than the Pulse Repetition Frequency (PRF), ft>fr, then the 

velocity of the target is ambiguous. This is shown in Fig. 3.2. Once the target Doppler shift has 

increased past the first PRF line located at fr, the radar can no longer unambiguously determine 

the target velocity. For this reason, target Doppler frequency is normalized to the PRF, 

üt = T = ftTr. (3.11) 
Ir 

Using the normalized Doppler frequency w, a quick glance determines if the Doppler shift is un- 

ambiguous (normalized Doppler less than one) or ambiguous (normalized Doppler greater than 

one). 

Similar to Chapter II, the signal delay is expressed as a delay from the antenna element of 

interest to the reference element (the first element to receive the return signal), r'n, and a delay 

JThe Doppler shift is assumed equal at all antenna elements. 
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Time Domain 

Time 
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Frequency 
Figure 3.2     Time domain and frequency domain plots of the transmitted pulse 
illustrating ambiguous Doppler frequency. 

equal to the round trip time to the target, rt, 

Tn = n + 2r'n. (3.12) 

Keeping the physical geometry of the scenario under consideration, we see the nth antenna element's 

delay is a function of the target's elevation 6t, azimuth <f>t, and range Rt. The round trip time to 

the target is a simple function of the velocity of propagation c and range Rt, 

n = 2Rt (3.13) 

The differential delay from the reference element to the nth element is 

/        k(fltl^)Tn        rik(6t,<j>t)'d d . 
Tn =  = — = -n-cos0tsin0t. (3.14) 
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Figure 3.3     Antenna array element block diagram. ADC is an analog to digital 
converter. 

Related to this expression is the target spatial frequency, 

,     k(fl«,0«)-d     d      ... 
i?< = —-—r—'— = — cos 0t sin (j)t. 

A0 Ao 
(3.15) 

The above equation for the spatial frequency relates directly to the |k0| found in Chapter II 

Eqn. (2.3) for an array oriented along the x axis. 

Using these expressions, the received signal shown in Eqn. (3.10) can be rearranged to show 

the radar ambiguity function. Since each antenna element has its own receiver and matched filter 

as shown in Fig. 3.3, the matched filter output2 for the nth element signal is given as [21], 

Af-l 

xn{t) = a^'V"2^ 53 e 

m=0 

,jm2irüi X(t - rt - mTr,ujt), (3.16) 

where x(r<>/t) is the radar ambiguity function denned by Skolnik [17, page 412] as 

\J — O0 
dß (3.17) 

The ambiguity function is used to assess the properties of the transmitted waveform in terms 

of its target resolution, measurement accuracy, ambiguity, and response to clutter [17]. Section 11.4 

2Ward's expression assumes rt » 2r'n. 
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of Skolnik's text [17] is an excellent introduction to the usefulness of the radar ambiguity function. 

For the purposes of this discussion, the following property is of interest. 

The ambiguity function evaluated at (0,0) represents twice the energy in the return signal. 

Because of the waveform normalization shown in Eqn. (3.6) this is simply one, 

|X(0,0)|2 = (2£)2 = 1. (3.18) 

Let us consider the return from a target at a particular range gate, I. First, discretize time 

through a sampling operation at each PRI. In other words, the continuous variable t becomes 

tm=Tt+ mTr for m = 0 : M - 1, (3.19) 

where the round trip delay r< is introduced to simplify the next step. The sampled target return 

from a particular range gate is 

M-X 

xn(tm) = xnm = are> V2™* £ e*2*«0'x ((™ " Q)Tr, ft), (3.20) 
q=0 

where Qt is the normalized Doppler frequency and the range gate dependence, I, has been suppressed 

from the subscript. From this point forward, we always assume the item of interest is for a particular 

range gate/cell allowing suppression of the I subscript. It is assumed no target range ambiguities 

exist, therefore the x function is zero everywhere except when q = m. This allows the simplification 

xnm = are
J'V2™'V'2'rmO'x(0, ft). (3.21) 
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Furthermore, the product of the target Doppler shift and pulse width is assumed much less than 

one allowing the approximation 

ftTp < 1 implies x(0, /) « 1. (3.22) 

Using this approximation, the target samples at the nth antenna element and mth pulse, xnm can 

be expressed as 

xnm = ate*2™*' ej2l,m0i, (3.23) 

where the complex random amplitude term at contains the phase and amplitude terms shown 

previously, i.e. at = are^. 

3.3   Fundamentals of STAP 

As mentioned previously in Chapter II, MATLAB® notation is used wherever possible to 

express the formulation of matrices and vectors. In particular, X = [xi X2] places the two column 

vectors side by side to form a matrix, and x=vec(X) places the columns of X end-to-end forming 

a vector. Lower case bold letters represent vectors and upper case bold represent matrices. 

To begin the fundamentals of STAP, examine Eqn. (3.23). First, create a column vector 

containing each antenna element sample at a particular range gate I and pulse m denoting it xm, 

xm    =   atei2™*' [1; c*2**; ej4*»<;...; ^(JV-iJ^jT 

=   ate'2'rmo*a«(0«). (3.24) 

where af (ßt) is the spatial steering vector of length N and the range gate/cell dependence has again 

been suppressed in the subscript. Using this notation, the incoming samples can be written as the 
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matrix X, 

X = X0     Xi      ...      XM-1 (3.25) 

where the matrix is for the range gate/cell of interest. 

Since the spatial frequency is a function of the target elevation and azimuth angles (see 

Eqn. (3.15)), the spatial steering vector can be written as an explicit function of these variables, 

at(0t,&) = [1 e^
cos^sin*' e^«>^in^ ... e™"?*" «»ft »fa ft jr (3 26) 

Similarly, the temporal steering vector bt(üt) is defined as the vector of exponentials spanning 

the M pulses in the CPI, 

bt(Qt) = [1 ej2*Qt ej4*Qt ... ei2(M-i)^4jT> (327) 

The relationship between these two vectors forming the matrix of received target samples 

is characterized by the Kronecker product, denoted ®. See Appendix A for a discussion of its 

properties. The Kronecker product of the temporal and spatial steering vectors, 

vt(ä*(,i?i) = bt(Qt) ® attft), (3.28) 

is defined as the space-time steering vector v4, where the above equation emphasizes it's normalized 

Doppler and spatial frequency dependence. Scaling this length NM vector by a random received 

amplitude parameter (subscripted with a t for the target) gives 

Xt = o*vt, (3.29) 
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where Xt is the space-time snapshot for the target. This length NM column vector represents the 

target returns received by each antenna element (n = 0 : N - 1) due to each transmitted pulse 

(m = 0 : M — 1) at a particular range gate/cell of interest I. Relating this Kronecker product to 

the matrix of returns shown in Eqn. (3.25) illustrates it is simply the stacking of the columns of X 

end to end to form the column vector, 

X = vec(X). (3.30) 

Since the target is not the only echo returned to the radar, an undesired component, xu 
must 

be introduced in the model, 

X = Xt + Xu- (3-31) 

Our model will consider the undesired components due to clutter, noise, and barrage noise jamming. 

Let us give a quick summary of the important points of the development so far. The complex 

scalar xnm contains the received signal from a particular antenna element and pulse of interest. 

Expanding this into a vector across all of the antenna elements results in the spatial steering vector 

a(#) containing the received signals from every antenna element at the pulse of interest. Expanding 

xnm into a vector across all pulses results in the temporal steering vector b(ö) containing the 

received signals from every pulse but only one antenna element. The space-time snapshot combines 

these two vectors into one column vector, denoted by the use of the Kronecker Product notation. 

It contains all of the received signals from every pulse and every antenna element at one range gate 

/. Since the time between each pulse is divided into L range bins, there are L total space-time 

snapshots in the CPI. 

Figure 3.4 is a visual illustration of the CPI datacube. The shaded cross section is represen- 

tative of the space-time snapshot where the columns of the matrix/cross section form the snapshot 
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Figure 3.4     The CPI datacube of dimension M x N x L. 

vector. As mentioned previously, the number of pulses M in the CPI define its length. Therefore, 

the time duration of the CPI is MTr. 

Also, notice the raw data is stored from each antenna element. No weighting is applied to the 

received signals as explained in Chapter II. The weighting is performed after the data is stored. 

This is the function of the space-time adaptive processor. Withholding the weights until after the 

data in the CPI is known allows the statistics of the data to drive their calculation. 

The next step in the development of STAP fundamentals is analysis of the undesired com- 

ponent Xu m Eqn. (3.31). This component consists primarily of three sources: thermal noise, 

jammers, and clutter. The following sections examine each of these in detail. 

3.3.1 Thermal Noise Model. This model begins by assuming the only noise present is due 

to the internally generated thermal noise of the receiver. This noise is taken to be white, therefore 

there is no correlation of the noise between pulses and it is also uncorrelated spatially (between 

antenna elements). Let xnm describe the noise received in the nth antenna element. Since the noise 
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is assumed white, the expected value of received noise is 

&\xnmxn'mJ = °~ "n—n't (3.32) 

where a2 represents the noise power in a single element. This noise power is given by the noise power 

spectral density iV0 multiplied by the bandwidth B of the receiver (since this analysis assumes a 

separate receiver on each antenna element), a2 = N0B. The Kronecker delta 6 in the above equation 

is defined as 

On-n' = < 
1   n = n' 

(3.33) 
0   n # ri. 

A similar expression shows the correlation of the noise terms from pulse to pulse, 

£{Xnm,Xnm'} = cr2Sm-m'- (3.34) 

If we let Xn represent the MN x 1 spatial snapshot of noise signals on each antenna element, 

the noise space-time covariance matrix R„ is shown by 

R-n = HXnXn } = &MN = <T*IM ® IjV, (3.35) 

where I is the identity matrix with dimension shown by the subscript and a1 is the previously defined 

noise power per antenna element. The covariance matrix shown above serves as the thermal noise 

component of the overall covariance matrix R. The next undesired component considered is the 

jamming model. 

3.3.2   Jamming Model.      At this point, only noise jamming originating from a long range 

airborne or ground based platform is considered.  The bandwidth of the jammer Bj is assumed 
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larger than the radars instantaneous bandwidth (the inverse of the time domain pulse width Tp), 

i.e. 

Bj>B = ±. (3.36) 
-Lp 

In order to counter a jammer through STAP, its signal must remain correlated across the 

antenna elements. This means the time for the jamming signal to travel across the array is less 

than the inverse of its bandwidth, a measure of the correlation time for the jammer. Figure 3.5 

helps explain this point. 

Examining the inverse Fourier transform of the jammer's power spectral density envelope 

shows an increase in the time domain width as the jammer bandwidth decreases. Conversely, as the 

bandwidth of the jammer approaches infinity the time domain width approaches a delta function. 

The null-to-null width of the time domain sa(rc) (sine over argument) curve can be viewed as the 

time in which the statistics of the jammer remain correlated. Therefore, if the time to transcend 

the antenna array is less than this width the jammer signal remains correlated. In other words, the 

relationship 

h>™ <-> 
must hold for the jammer to remain correlated across the array. 

The jammer signal received by each antenna element is analyzed in the same manner as the 

target signal. Again, the ultimate goal is development of a space-time covariance matrix Rj for use 

in the STAP algorithm. This covariance matrix contains the correlation statistics of the jammer 

and allows the algorithm to locate the jammer spatially and in time. A null is then formed in that 

location. 
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Figure 3.5     The jammer bandwidth time domain correlation relationship. 

First, let xnm represent the signal received from the jammer on the nth antenna element at 

the mth pulse. Creating a vector of samples across the antenna array elements results in 

xm — ttma.j(oj,<pj), (3.38) 

where the jammer amplitude is represented by am and a,- is the jammer spatial steering vector. 

Since this is a noise jammer the amplitude is random. This amplitude fluctuates from pulse-to-pulse 

and can be represented as a vector of random amplitudes, 

aj = [a0 oti ... aM-i]T. (3.39) 
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As before, the Kronecker Product allows the compact notation of a space-time snapshot for the 

jammer Xj, 

Xj = aj®aij. (3.40) 

The jammer is assumed correlated across the antenna array as mentioned in the beginning 

of this section. Furthermore, the jammer location is assumed constant throughout a CPI. Using 

these assumptions, the random amplitudes are uncorrelated as shown by 

£{ama*m,} = a2ij8m-m:, (3.41) 

where S is again the Kronecker delta and £j is the Jammer-to-Noise Ratio (JNR). Writing the above 

equation in vector form results in 

£{aaH} = <7%IM, (3.42) 

where the parameter a2 is noise power per element as mentioned in the noise model section. 

The JNR is easily derived using the radar range equation as given by Skolnik [17]. First 

examine the one way range equation for the received jammer power 

*-£| <3-43> 
given Sj (W/Hz) is the radiated power spectral density (hence it already includes the effect of the 

jammer antenna gain), Ae is the effective area of the receive antenna, and Rj is the range to the 

jammer. The effective area of the receive antenna depends on gain and wavelength as given by 

Ae = >&, (3.44) 
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where Gr is the gain of the receive antenna and A0 is the nominal wavelength. Substituting for the 

receive antenna effective area in Eqn. (3.43) gives 

The receive antenna elements are assumed to radiate with a power pattern given by g{6, <j>), or the 

square of the voltage pattern \f(9, </))\2. The term Lr is introduced to account for losses in the 

receiver and is essentially a scaling factor. Using these tools, the received jammer power spectral 

density J0 becomes 

and the space-time covariance matrix for the jammer Rj results through the following manipulation, 

R;   =  £{xjxf} 

=   £{(aj®eij)(aj®eij)
H} 

=   £{ajaf®*j*f} 

=   (PijlM®*!**. (3.47) 

Again, this relationship assumes the jammer location is constant over the CPI. 

Let us extend Eqn. (3.47) to two jammer signals.  The vector of received jamming signals 

becomes 

*m = <£>., (ef >,#>) +og>a, (#>,#>) , (3.48) 
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where the superscripts denote the jammer. The jammers are assumed independent, therefore the 

cross correlation of the amplitudes is zero 

£ {<*«<*£>} = aHfSi-i'Sm-m'. (3.49) 

Forming the space-time snapshot is merely a matter of summing the signals received from the two 

jammers, 

Xj = af} ® af} + af ® af. (3.50) 

The space-time covariance matrix then follows directly, 

R-i  = £{xjxf} 

= Rf+ Rf 

= Im®^,(af)af)ff + af)af^) 

= Iro ® (#W + #J2)) , (3.51) 

where the two N x N matrices $j ' and $^- ' represent the jammer spatial covariance matrices. 

They are the result of taking the expected value of the received jammer signal across the elements 

at a particular pulse, 

#,- = £ {xmx£} = a^jBLjSif. (3.52) 

Now take a look at the more general case of P jammers. Since the result is again a sum of 

the individual jammer space-time covariance matrices, Eqn. (3.51) still holds except there are now 
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P terms. However, it can be more compactly represented by redefining * to represent all of them, 

$ = AjSjAf, (3.53) 

where Aj is an N x N matrix whose columns contain each of the jammers' spatial steering vectors 

as given by 

Ai=[aWaf)...af] (3.54) 

and 3j is a P x P matrix containing the received signal-to-noise ratio for each jammer multiplied 

by the element noise power along its diagonal, defined by 

3j = <r2diag(£,). (3.55) 

Therefore, the jammer space-time covariance matrix for P jammers becomes 

Rj = lM ® *• (3.56) 

3.3.2.1 Jammer Space-Time Covariance Matrix Rank. The rank of the jammer 

space-time covariance matrix is important in the design of STAP techniques. If the matrix is of 

low rank the STAP algorithm expends fewer degrees of freedom placing nulls on the jammers. 

The rank of the space-time covariance matrix for a single jammer is equal to M since the 

outer product shown in Eqn. (3.47) is a linear combination of the vectors. However, for P jammers 

the rank increases considerably. 

Since the size of R,- is MN x MN regardless of the number of jammers, the worst case scenario 

is a matrix of full rank equal to (MN)2. However, because R; is block diagonal (see Eqn. (3.56)), 
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the rank of It/ is a linear combination of the rank of each of the blocks along the diagonal or 

rank(Rj) = M rank($). (3.57) 

The problem of determining the jammer rank now relies on the rank of the jammer spatial covariance 

matrix $. The following relationship between the dimension of two matrices holds [19, page 200], 

dim(A + B) = dim(A) + dim(B) - dim(A n B). (3.58) 

The spatial covariance matrix $ representing P jammers is a sum of the individual spatial 

covariance matrices (each of rank one). Given statistically independent jammers (different loca- 

tions), the dimension of the intersection of the two matrices is zero. Therefore the dimension (or 

rank) of the jammer spatial covariance matrix # becomes 

rank($) = P, (3.59) 

where P is the number of jammers. Using this fact, the rank of the jammer space-time covariance 

matrix is seen to be significantly lower than full rank, 

rank(R,-) = MP. (3.60) 

Therefore MP Degrees Of Freedom (DOF) are used to place nulls on the jammers where P < N. 

3.3.3 Clutter Model. Clutter is defined as any unwanted radar echo. Because the focus 

of this section is on airborne surveillance radars, the Earth serves as the primary source of clutter. 

Hence, the model described in this section only describes clutter due to the surface of the Earth. 
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Figure 3.6     Top and side views of the clutter ring. 

The return from clutter is very similar to that of a target. However, several key differences 

play an important role in the derivation of the model. First, since the clutter is due to the surface 

of the Earth it is distributed in range to the horizon. Second, the surface of the Earth is considered 

stationary. Hence, the only Doppler shift is due to the velocity of the airborne platform relative to 

the clutter patch of interest. Using these observations, the clutter is broken into rings of constant 

range around the aircraft. Further separation of the clutter ring results in clutter patches. Each 

clutter patch is considered of constant range and velocity with respect to the airborne platform. 

Figure 3.1b shows the clutter ring for the airborne platform. A top view of the clutter ring (with 

the airborne platform at the center) is shown in Fig. 3.6a. 

The unambiguous range is divided into L range bins (rings of constant range) and each ring 

into Nc patches. The elevation angle to the ith clutter ring/range bin is given by 

= -sin 
.! (R2

c+ha(ha + 2ae)\ 
V    2Rc(ae + ha)    )' 

(3.61) 

where Rc denotes the range to the clutter ring, ha the altitude, and oe the effective radius of the 

Earth. As is customary, the effective radius is considered as | the mean radius (|a) of the Earth to 

account for the refraction of radio waves in the atmosphere [17, page 449]. As defined in Fig. 3.1b, 

the elevation angle is referenced to the horizontal from the airborne platform. 
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The grazing angle ipc is the angle between a line connecting the airborne platform to the 

horizon and a line tangent to the earth at the horizon point. Shown in Fig. 3.6b, this angle is given 

by 

^ = -sin-ftM^±M). (3.62) 

The grazing angle is zero when the clutter ring of interest is equal to the range to the radar horizon. 

The spatial frequency of the ikth clutter patch3 is found by substituting the angles associated 

with the patch into Eqn. (3.15), 

dik = T- cos 9i sin <j)k, (3.63) 
A0 

where A0 is the nominal wavelength, Oi is the elevation angle to the patch, and <j>k is the azimuth 

angle to the patch. The normalized Doppler frequency for the ikth clutter patch is expressed as 

Since the clutter is extended along the entire Earth's surface to the horizon, the unambiguous 

range of the radar becomes an important consideration in the development of the model. The 

radar's unambiguous range Ru is given by Skolnik [17, page 3] as 

Ru = 2^, (3.64) 

where c is the propagation velocity and fr is the PRF. Assuming the radar's unambiguous range 

is less than the range to the radar horizon, the clutter return will consist of echoes from multiple 

3The ikth clutter patch is defined as the kth patch on the ith ring. 
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ranges. Therefore, each ambiguous range is given by 

Ri =z Rc + (i - 1)RU for i = 1,... , Nr. (3.65) 

The number of range ambiguities to the horizon is denoted Nr. 

Prom these parameters, the component of the space-time snapshot due to clutter xc 
1S given 

by 

Nr    Nc Nr    Nc 

Xc = Y1^2aikV^ik'Qik^ = ^2^2aikh(^ik)®^ik), (3.66) 
8=1 k=l t=l k=l 

where an, denotes the random amplitude of the ikth clutter patch. 

The next step is to determine the Clutter-to-Noise Ratio (CNR) for each patch. This step 

is similar to the derivation of the JNR. However, the Radar Cross Section (RCS) of each clutter 

patch must be determined because of the two way radar equation. The dependence of the RCS of 

the ikth clutter patch is explicit to highlight the fact the aircraft is flying over a non-homogeneous 

surface and hence the RCS per unit area is dependent on the clutter patch under consideration. 

The RCS per unit area is given by Skolnik [17, page 471] as 

^«,^) = £^si, (3-67) 

where ac is the RCS due to the area circumscribed by Ac. Using this relationship, the RCS of the 

ikth clutter patch is given by 

<?ik = <r0(6i, <t>k) x Aik, (3.68) 
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where the Aik is the area of the ikth clutter patch (assumed constant for all i and k). Using the 

patch area given by Skolnik [17, page 472], the RCS becomes 

cT 
Vik   =   cr0 (Oi ,4>k)Ri&4>-Y sec ipi 

=   (x0(9i,(l)k)RiA<f) — sec^i 

=   a0{ßi,<t>k)Rik<t> ARsecipi. (3.69) 

The data for land clutter is sometimes given by the parameter 7, related to the nominal RCS 

of the clutter patch [17, page 490] through the relationship 

cr0=7sinV>c, (3.70) 

where ipc is again the grazing angle. This model serves as the basis for the clutter simulations found 

in this chapter. The terrain dependent parameter is taken to be 7, however Skolnik states 7 also 

depends on the grazing angle if the angle of incidence is near perpendicular or the grazing angle is 

extremely low in the case of a low flying aircraft [17, page 490]. 

Using the above definition for the RCS of each clutter patch, the CNR at the ikth clutter 

patch is given by the two way radar range equation, 

where the element pattern is represented by g(6i,<f>k) as before and the two-sided receiver noise 

power spectral density is represented by ^, such that the noise power per element is a2 = ^f-2B = 

N0/Tp (since the radar is assumed to have a separate receiver for each antenna element). 
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Due to the variability of the clutter, the returns from different patches are assumed uncorre- 

lated as shown by 

£ {aika*,k,} = a2£ik8i-i'8k-k' ■ (3.72) 

Notice the element noise power multiplied by the CNR results in the power in the ikth clutter patch 

as expected. Cross correlation terms are zero. Using this fact, the clutter space-time covariance 

matrix Rc is derived as follows, 

Re    =   £{XcXc) 
{Nr   Nc Nr    Nc \ 

X^^aifcV^ifc.cDifc) Y^ 13 a«'*'v(1W>öi'*')lf \ 
i=l ft=l i'=l fc'=l J 

{Nr   Nc   Nr    Nc -\ 

131353 13 <*ik<A'k'v('&ik,Üik)v{'&i<k>,ÜVk')H \ 
j=l *=1 i'=l fc'=l J 

Nr    Nc 

=   1313cr2^*v(,?«'ö^)v(1?i'ft''öJ'*')ff. (3.73) 
1=1 k=l 

where the final step uses the results from Eqn. (3.72). The clutter space-time covariance matrix 

can also be expressed using the Kronecker Product, 

Nr    JVC 

Rc = ** 1313 tiMüikMü>ik)H <8> a(tftt)a(tf«)ir• (3-74) 
»=i fc=i 

An even more compact notation is available through the definition of the following matrices, similar 

to that done for the jammer covariance matrix. Begin by defining the steering vector matrix with 

the assumption that no range ambiguities exist (Nr = 1), 

Ve = [vi;v2;-";vjv0]. (3.75) 
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Then form the clutter power distribution into the diagonal matrix 

Be = a2dia«([fc,6,...,fo]). (3.76) 

Use of these two definitions results in the following form for the clutter space-time covariance 

matrix, 

Rc = VCECV
H. (3.77) 

3.S.S.I Clutter Ridges. The relationship between the clutter patch and the motion 

of the airborne platform gives rise to a dependence on Doppler frequency. This relationship produces 

what is characterized by Ward [21, page 24] as a clutter ridge. To see this, first revisit the spatial 

frequency of the ikth clutter patch, 

Ak = T-coseism<t>k. (3.78) 

The Doppler frequency of this patch is given through the relationship denned previously as 

2vik      2k((?j,<fo!)-v0 
Jik = -r— = : , (Ö.79) 

Ao An 

where vtk is the velocity of the ikth clutter patch relative to the airborne platform and va is the 

aircraft velocity vector. If the aircraft is assumed traveling in the x direction, the Doppler frequency 

becomes 

2v 
fik = -r-2- cos 9i sin <j>k. (3.80) 

A0 
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Rearranging the above equation highlights the expression for spatial frequency, 

2dva . 
fik    =    -jT—cos0ism0fc 

=   ^4«,, (3.81) 

where d is the interelement spacing of the antenna.  Normalizing this expression to the PRF as 

before results in 

<*>jk = -7- = fikTr = —j-^öik, (3.82) 
/r d 

where Tr is the PRI. This is the relationship between the normalized Doppler frequency and the 

velocity of the aircraft. Since the spatial frequency of the ikth clutter patch is dependent only on 

<f>k (the aircraft is assumed at a constant altitude), the normalized Doppler frequency is linearly 

dependent on the azimuth with a slope ß given by 

/3 = ^. (3.83) 

Examining the units in this relationship shows it represents the number of half-interelement 

spacings d crossed during one PRI. If this slope is greater than one the clutter is Doppler ambiguous 

since it is spread over a frequency band wider than the PRF. If it is less than one it is unambiguous. 

To further understand this Doppler ambiguity relationship, examine the Fourier series of the receive 

clutter echo pulse. 

The Fourier series representation of a rectangular pulse is a series of delta functions spaced a 

distance fr apart (the PRF), the envelope denned by a sine over argument curve. The Doppler shift 

of the clutter patch return moves the entire spectrum either up or down in frequency, depending 

on whether the aircraft is approaching or receding from the patch. The receiver bandwidth B is 
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fixed about the carrier frequency and does not move in correlation with this Doppler shift. The 

bandwidth of the receiver is less than the PRF. Therefore, if the Doppler shift is enough to move 

the spectrum so that one of the outlying pulses is now in the receiver bandwidth, the radar cannot 

distinguish between it and the original PRF line. Hence, the Doppler frequency is ambiguous or 

aliased. 

As ß increases it becomes more difficult to suppress the clutter. The aliasing in the Doppler 

frequency space explains this relationship. Increased aliasing means more clutter returns contain 

the same Doppler frequency as the target, further obscuring it. Figure 3.18 shows a plot of an 

adapted antenna pattern where clutter ridge null is easily visible for ß = 1. From the definition 

of ß, it is obvious the velocity of the aircraft plays a role in clutter suppression. Figure 3.7 shows 

several plots illustrating the aliasing of the normalized Doppler frequency for various values of ß. 

In the ß = 1 plot only one Doppler frequency exists for every possible spatial frequency. 

Obviously, for values of ß less than one this relationship still exists. This is termed the unambiguous 

Doppler condition. As ß is increased more and more spatial frequencies can be assigned to any one 

Doppler frequency. Hence, the ambiguous Doppler condition. Figure 3.7c shows a case where as 

many as four spatial frequencies can be associated with any one Doppler frequency. 

3.3.3.2 Rank of the Clutter Space-Time Covariance Matrix. Because the clutter 

ridge is linear, it suggests the rank of the clutter matrix is low. This is supported by Brennan's 

rule. This rule states 

rank(Rc) « [N + (M - l)ß\, (3.84) 

where the [ J symbols indicate rounding to the nearest integer. Brennan's rule states the rank of 

the clutter covariance matrix is a function of the number of antenna elements, the CPI length, and 
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Figure 3.7     Clutter ridge plots illustrating the normalized Doppler aliasing for 
various values of ß. 
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Figure 3.8     Correlated clutter sampling (ß equal to an integer) gives low rank. 

the slope of the clutter ridge. For integer values of ß this is an accurate estimate of the rank as 

Fig. 3.11 shows for the upcoming example. 

Brennan's rule makes a lot sense. It is primarily a function of ß, the number of half- 

interelement spacings transcended during one PRI. If ß is an integer the antenna elements basically 

take the same clutter sample as the aircraft travels. Since these samples correspond to the same 

spatial position, the clutter space-time covariance matrix rank is low due to the strong correlation 

between samples (they are not linearly independent). Figure 3.8 illustrates this concept. 

3.3.3.3 CNR Plot and Clutter Covariance Matrix Rank Examples. Given the el- 

ement voltage pattern described below and the scenario listed in Table 3.1, let us calculate the 

resulting Clutter-to-Noise Ratio (CNR) pattern for the ikth clutter patch and also the rank of the 

clutter space-time covariance matrix for various values of ß. The antenna array is rectangular with 

elements in the x and z directions. The beamforming operation uses only a row of elements in the 
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Table 3.1     Scenario parameters for the clutter example. 

Variable Value 

M 18 
N 18 
fo 450 MHz 

/r 300 Hz 

TP 200/is 

Pt 200 kW 
B 4 MHz 
Fn (Noise Figure) 3 dB 
Nc 361 
ha 9 km 
Rc 130 km 

7 -3 dB 
Transmit Gain 22 dB 
Column Receive Gain 10 dB 
Number of Elements x 18 
Number of Elements z 4 
Element Pattern Cosine 
Element Gain 4 dB 
Element Backlobe Level -30 dB 
Transmit Taper Uniform (None) 

x direction, 18 elements, each with the voltage pattern 

Wu4>k)={ 
cos<f>k       -90° < <f>k < 90° frontlobe 

be cos fa    90° <(j>k< 270° backlobe. 

The value of be required to give a backlobe of-30 dB is 0.032, the inverse of the dB operation. 

Figure 3.9 shows the antenna's pattern using this value. 

The transmit gain in Eqn. (3.71) is a function of the azimuth and elevation angles as given 

by the array pattern. The array pattern is calculated using the same techniques as in Chapter II 

and is given by 

JV-l 

W(k -^o) = jj^2 Wie-j(k-k°> 
i=0 
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Figure 3.9     Element voltage pattern for the clutter example. 
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where k is the spatial frequency vector and W{ is the individual antenna element weight. No weights 

have been applied to the antenna element signals, hence w is equal to one for all elements. Also, 

the antenna beam is not steered in this example so k0 is equal to the zero vector, resulting in a 

beam along the boresight of the array. Using Eqn. (2.3), the spatial frequency is given by 

OTT „ 

k    =     yk(0,,to) 

27T 
— {cos 6{ sin fax + cos 9i cos <j>kV + sin B{z\. 
A0 

Notice, given the antenna elements oriented in the x direction, the formula coincides with the 

expression for spatial frequency found in Eqn. (3.15). Since the beamforming operation is only 

across the elements in the x direction, the outer product in the exponential simplifies the equation 

to 

W(^) = ^f>~J'^C0SMin^ 
n=0 

The summation's argument can be written to the power of it's index and simplified, 

JV-l 

W(9i,4>k)    =    l£(e-'%lc«""ta**)B 

n=0 

1      .^(N-i)     „  . ^ sinf^cosöiSin^) 
—e~3    *»    cos *sin **  — 

sin [ j£ cos 6i sin <j>k) 

The transmit gain pattern for the array is now given by (the antenna pattern as derived in Chapter II 

is voltage) 

Gt(Öi,4>k) = 9(9i,<t>k)W2(6i,<t>k), 
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where the element power pattern g(0i,4>k) is simply the voltage pattern squared, \f(0i,<j>k)\2- 

The next step is to determine the elevation angle for the given scenario. Using Eqn. (3.61) 

and the values given in Table 3.1, the elevation angle is calculated as -0.0769 radians. The cosine 

of this angle is approximately one and is ignored from this point forward. 

The next major calculation is the determination of the RCS from the ikth clutter patch. To 

begin, determine the grazing angle for the aircraft's given altitude and range of interest. Substi- 

tuting the appropriate values into Eqn. (3.62) shows the grazing angle to be 0.0617 radians. Prom 

here, the RCS per unit area is easily calculated given the terrain parameter 7, 

a0 = 10_0-3sin(0.0617) = 0.0309. 

The granularity of the patches around the clutter ring of interest is given by 

A<f> = -£■ = -£- = 0.0174 radians 
ivc     dol 

and the radar's range resolution is 

c 3xl08 

AR=W = 2(4710*) =37-5m- 

This example is performed at the first ambiguous range, therefore ^ = if)c. Also, our interest 

is focused on only one clutter ring. Using these assumptions and the constant 7 clutter model, the 

RCS of the ikth clutter patch is constant around the clutter ring and equal to 

Vik    =   er0Ri A<f>AR sec ipi 

=   0.0309 x (130 x 103) x 0.0174 x 37.5 x sec(0.0617) 

= 2626.09 m2. 
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The last unknown parameter for the CNR pattern (Eqn. (3.71)) is the receiver noise power 

spectral density, N0. The system noise figure Fn is given in the table. Therefore, the noise power 

spectral density in the receiver is [17, page 19] 

N0 Fn = —r— or N0 = FnkT0Gr, 

where the gain of the receiver Gr is assumed equal to one, the system noise figure Fn is given as 

part of the problem, k is Boltzman's constant, and T0 is the standard temperature (290°K). Solving 

for N0 gives 

N0 = 100-3 x (13.80658 x 10-24) x 290 = 319.554 x 10-15. 

This is the noise due to thermal activity in the receiver. 

Substituting these values and an interelement spacing d equal to half the wavelength into 

Eqn. (3.71) results in the plot shown in Fig. 3.10. This is the CNR around the entire clutter ring. 

Since the antenna beam is not steered, the main beam is located at zero degrees azimuth. Notice 

the sharp roll-off at ±90° azimuth due to the antenna element patterns. These locations represent 

the ends of the antenna array. 

The next part of the example examines the performance of Brennan's rule in determining the 

rank of the clutter space-time covariance matrix Rc. Since we want to plot the rank of the clutter 

matrix for various values of ß, first determine the Doppler frequency of the ikth clutter patch in 

terms of this using Eqn. (3.83), 

fik    =    -r— cos 9i sin (f>k 
A0 

2ßd        a   •   A — cos &i sin <pk 
21rA0 

ßd 
.ZrA0 

cosöjsin^fc. 
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Figure 3.10     CNR around the clutter ring (main beam pointed at 0° azimuth). 
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The temporal steering vector requires the normalized Doppler of the ikth clutter patch (see Eqn. (3.27)) 

given by 

fik      ßd       „   .    , 
Uik = ~r = Y" 

cos°isin 4>k- 
Jr        "o 

Prom this point on, the formulation of the clutter matrix is the implementation of Eqn. (3.74) in 

MATLAB®. Because of the peculiarities of MATLAB® the implementation is not discussed here. 

The element noise power a2 is assumed equal to one for this simulation. 

Figure 3.11 shows the resulting ranks for clutter matrices corresponding to ß values of 0.6, 1, 

2, 2.83, and 3. Because the number of nonzero eigenvalues is synonymous with the rank of a matrix, 

this metric is used. As mentioned previously, Brennan's rule predicts the rank of the matrix very 

well when ß is an integer. This means the number of half-interelement spaces transcended during 

a PRI is an integer value. Therefore the antenna elements line up and the subsequent elements 

basically retrieve the same clutter sample as the first. Hence, the clutter matrix contains correlated 

clutter samples. This condition is shown in Fig. 3.8. However, Brennan's rule does not hold when 

given uncorrelated clutter samples (non-integer values of ß) as shown by the tapering eigenvalues 

for the ß = 0.6 and ß = 2.83 curves. 

3.4   Direct Form Fully Adaptive STAP 

The purpose of Space-Time Adaptive processing is to direct an antenna null in the direction 

of a jammer or a significant clutter source. This minimizes the effect of the interference and can 

lead to the detection of a target in environments standard radar processing cannot handle. This 

section discusses computation of the antenna pattern/filter weights to steer the antenna nulls using 

a fully adaptive algorithm. 

The two basic approaches to STAP are Fully Adaptive STAP and Partially Adaptive, or 

Reduced-Dimension STAP. There are inherent advantages and disadvantages to both. Obviously, 
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the best performance to be obtained is with a fully adaptive algorithm. However, the computational 

burden becomes too much to perform within the timeline of the typical radar. 

Fully adaptive STAP results in a weight vector for every element of the space-time snapshot 

(see Eqn. (3.31)), i.e. every element and pulse in the CPI is weighted by the digital processor. This 

entire process is described by 

z = vrHX- (3.85) 

The vector w is the weight vector defined by [21] 

w = R_1vt, (3.86) 

where R is defined as the sum of all the undesired component space-time covariance matrices, 

vt is the target steering vector, and z is the output of the algorithm. The undesired space-time 

covariance matrix is given by 

R = Rn + Rj + Ro (3.87) 

where Rn represents thermal noise, Rj represents jammers, and Rc represents clutter. 

The expression for the algorithm (Eqn. (3.85)) maximizes Signal-to-Interference-plus-Noise- 

Ratio (SINR), maximizes probability of detection for a given false alarm probability, and with the 

proper choice of scale factor minimizes the output noise power subject to a unity gain constraint in 

the target direction [21, page 57]. One problem with this approach is high sidelobes in both angle 

and Doppler. For this reason Ward also introduces the tapered weight vector, 

gt = t0vf, (3.88) 
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where t is a two dimensional window/taper and © is the Hadamard product (equivalent to an 

element by element multiply). This two dimensional window can be generated from two one di- 

mensional windows using the Kronecker product as shown by 

t = t6®ta, (3.89) 

where tj, and t0 are the one dimensional window functions. An expression equivalent to Eqn. (3.88) 

is 

gt = (t6 0b*)®(to©a«). (3.90) 

This tapered space-time steering vector can be substituted for v< in Eqn. (3.86). The window 

in this new weight vector produces low sidelobes at the sacrifice of mainbeam width and gain. 

Correspondingly, it no longer produces the optimum SINR. Harris [11] offers an excellent discussion 

on windowing with a direct comparison of the different types of windows.  The SINR is defined 

as [21] 

SINR =^^1  , (3-91) 

where the numerator represents the signal power and the denominator represents the interfer- 

ence plus noise power. To get the optimum SINR, substitute the optimum weight vector w from 

Eqn. (3.86) into the above expression and simplify, 

SINR,      -    ^6lvfB.-Wt|
a 

ga6vfR~1vtvfR-1vt 

vfR-iv« 

=   ff^tvfR-Wt, (3.92) 
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where a2 is the noise power per element and & is the target SNR per element. Since Eqn. (3.92) is 

for one particular target azimuth and Doppler, it can be expanded across normalized Doppler by 

highlighting the temporal steering vector dependence on Q, 

SINRopt(ö) = a2^(b((ö)(g.a()
HR-1(bt(ä))®at). (3.93) 

The equation could also be written to highlight the dependence on spatial frequency because of the 

spatial steering vector but then the transmit and receive antenna patterns have to be taken into 

account when plotting this expression. 

Similarly, the SINR for the tapered pattern can be obtained by substituting Eqn. (3.88) into 

Eqn. (3.91) and simplifying, 

gfR-1» 
SINRtap = ""Jgt,".  "  • (3-94) 

Highlighting the dependence on normalized Doppler u> produces 

*% [(h © bt(ä>)) ® (t0 © en)]   R    (b*(ö) ® a<) *w-l, 
2 

SINRtap (ö) = w . (3.95) 
[(t6 © bt(fi>)) © (ta © *t)]H R-1 [(t6 © b«(ö)) © (t0 © a«)] 

Figure 3.12 shows the effect of three different types of windows on the SINR for a fully 

adaptive processor. The plots shown are for an 18 azimuth element array with 18 pulses in the 

CPI. The noise power per element a2 and target SNR per element per pulse £< are both set to 

one for the plots. The interference matrix R is the same as that generated for the previous clutter 

example with the addition of two jammers and noise. The windows/tapers were applied in both the 

spatial and temporal domains. Referencing Fig. 3.12 shows the poorest performance of the three 

tapers shown is with the Blackman Harris window. This poor performance is expected because 

of the extremely low -90 dB sidelobes produced by this window in both the spatial and temporal 
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Figure 3.12     An SINR comparison of fully adaptive STAP for the Blackman Har- 
ris, Hanning, and Hamming [11] tapered steering vectors. 

domains.  The loss in main beam gain outweighs the gain found by suppressing the interference 

with the extremely low sidelobes. 

The SINR represents a good tool for the comparison of various STAP algorithms. Another 

tool is the SINR loss. This metric compares the performance of the algorithm to the optimal case, a 

noise only environment. In the noise only environment, the interference covariance matrix becomes 

R = Rn = a IMN- (3.96) 
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Substituting this noise only covariance matrix into Eqn. (3.92) results in the optimum Signal-to- 

Noise Ratio (SNR), 

SNRopt = <72&vf \lMNVt = 6vf v«. (3.97) 

Since the space-time steering vector is the complex exponential form of Eqns. (3.27) and (3.26), 

it's inner product is simply the number of elements in the vector, or MN. Therefore, the optimum 

SNR becomes 

SNR0pt = MN{t, (3.98) 

where & is the target SNR per element per pulse. Using this optimum SNR, we can define the 

SINR loss of the space-time processing algorithm as 

_ SINR(ö)) 
LsiNR " -SNiv- (3-") 

A plot of this metric corresponding to the windows used in Fig. 3.12 is shown in Fig. 3.13. 

A block diagram of the basic STAP process is shown in Fig. 3.14. The process involves three 

major steps: 

• Train the processor, i.e. generate a second set of data for use in the computation of the filter 

weights. The entire CPI datacube is used for the training algorithm in fully adaptive STAP. 

• Generate the weights using the new set of data obtained from step one. 

• Apply the weights to the space-time snapshot at the range gate of interest. 

Once the weights have been applied, the result is sent to the radar threshold detection circuit 

to make a target decision. A more detailed diagram of the fully adaptive STAP process is shown in 

Fig. 3.15. The enormous amount of data calculation is more readily apparent from this diagram. 
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Figure 3.15     Fully adaptive space-time processing model. 

Another metric of a STAP algorithm's performance is the antenna pattern it produces. The 

adapted pattern Pw(#,ü>) is given by [21] 

PVf(ö,ü) = \wHv(d)ü)\2, (3.100) 

where w is the weight vector and v is the steering vector (not necessarily steered in the direction 

of the target). 

An example of this adapted pattern using the parameters from the clutter example is shown 

in Figs. 3.16, 3.17, and 3.18. These patterns also show the introduction of two jammers, both at 

the same elevation as the airborne platform. The azimuth locations of the jammers are -40° and 

25° at a range of 370 km. The effective radiated power density for each jammer is 1 kW/MHz. The 

target is located at 0° azimuth with a Doppler frequency of 100 Hz. The value of ß for the plots is 

1, reflected by the clutter ridge null shown in the fully adapted pattern found in Fig. 3.18. 
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Adapted Pattern 

Figure 3.16     Fully adapted antenna pattern at 100Hz Doppler frequency. Vertical 
lines indicate jammer locations. 
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Adapted Pattern 

Figure 3.17     Fully adapted antenna pattern at 0° azimuth. 

Figure 3.16 shows a cut along the target Doppler from Fig. 3.18. Since the target is located 

at 0° azimuth, the mainbeam of the pattern is located at 0° azimuth. Notice the nulls placed 

along the jammer locations (sin(-40°) = -0.643 and sin(25°) = 0.423)). The nulls actually extend 

much lower. The plot doesn't show this because of the granularity of the azimuth angles used to 

generate it. Calculations at the these exact azimuth values show the nulls possess greater than 90 

dB attenuation. 

A cut along the target's azimuth is shown in Fig. 3.17. The mainbeam is placed at the target's 

Doppler at 100 Hz with a strong null at zero Doppler. Zero Doppler corresponds to mainbeam 

clutter, a significant source of target acquisition difficulties. Again, the granularity of the Doppler 

frequency values used to generate the plot does not show the true depth of the null. A calculation 

at exactly zero Doppler shows this null is greater than 90 dB down as in the case of the jammers. 
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Figure 3.18     Three dimensional image of the fully adapted pattern Pw with no 
tapering for a single target and two jammers. 

The final plot (Fig. 3.18) shows the entire pattern as viewed from the surface. The color 

represents the amplitude of the lobes. This figure shows the clutter ridge, corresponding to ß = 1. 

Notice the ridge corresponds to the one predicted by Fig. 3.7c. It is not linear in this plot because 

it is plotted against <p instead of sin <j>. 

Fully adaptive STAP is too computationally intensive to implement real time. The number 

of computations is on the order of (MN)3 [21]. Real time calculation is beyond current technology, 

although the computer industry is improving processor speed in such large steps that the ability to 

implement this algorithm could be reached in the near future (possibly within the next few years). 

Fully adaptive STAP is used primarily as the measure to compare reduced dimension algorithms. 

Reduced dimension algorithms can be implemented within the constraints of current computational 

technology. 
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Figure 3.19 The Factored Time Space (FTS) reduced dimension algorithm block 
diagram. This diagram applies to one range gate and is repeated for every range 
gate of interest. 

3.5   Partially Adaptive Factored Time-Space STAP 

As just discussed, computational load drives the need for a reduced dimension algorithm. 

One of the simplest methods is the Factored Time-Space (FTS) algorithm. 

This algorithm reduces the computational load by sacrificing the Doppler Degrees Of Freedom 

(DOF). The incoming signal from each antenna element is first Doppler filtered using the pulse 

returns from the range gate/cell of interest. A noise covariance matrix is then estimated from the 

Doppler filtered data and used to adaptively filter in the spatial domain, resulting in a scalar output 

for each Doppler bin. A block diagram of this process is shown in Fig. 3.19. The operations shown 

in this block diagram are repeated for each range cell of interest. 

Although Fig. 3.19 shows a Doppler filter bank of M bins, equal to the number of pulses in 

the CPI, the number of bins does not in general have to be equal to the number of pulses. The 

Doppler filter is implemented with the Discrete Fourier Transform (DFT). The use of the DFT 
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allows us to zero pad the incoming data stream (pulse returns from a particular antenna element) 

to obtain a greater number of Doppler bins. 

Using the DFT matrix allows us to mathematically express the FTS algorithm. Since this 

algorithm results in a single scalar for each Doppler bin, let's consider the mathematical architecture 

behind just a single Doppler bin, m. Begin by first obtaining the Doppler filter bank output for 

this bin. First define the Doppler filter bank using the M x M DFT matrix W. Since we have 

sacrificed all the DOF in the Doppler domain, we need a Doppler filter bank with very low sidelobes 

to suppress clutter. Therefore, let us express this low sidelobe Doppler filter bank as 

F = diag(t6)W*, (3.101) 

where t& is a window function (see Harris [11] for a complete discussion of windowing) and diag 

is the MATLAB® function for creating a diagonal matrix from the vector argument. The diagonal 

elements of the matrix are the elements of t&. Breaking this windowed DFT matrix down into its 

columns, 

F = fo     fl     ...      fjif _ (3.102) 

allows us to write the Doppler filter bank output for a particular bin. This output for Doppler bin 

m becomes 

Xm = (fm®Ijv)ffX, (3.103) 

where x is the space-time snapshot from Eqn. (3.29). The spatially adaptive filter weights for this 

Doppler bin become 

wm = R^at, (3.104) 
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where at is the spatial steering vector as denned in Eqn. (3.26) (or a tapered spatial steering vector 

gt could be substituted) and the covariance matrix is given by 

&m = £ {XmXm} = %i ® llff R (fm ® Ijv) • (3-105) 

Using these weights, the output of the FTS algorithm for the mth Doppler bin zm is 

*m = W^Xrn- (3-106) 

If we substitute Eqn. (3.103) into Eqn. (3.106), an expression results using the full dimensioned 

incoming data vector or space-time snapshot x> 

zm = *%{fm®lN)HX- (3-107) 

A full dimension weight vector associated with the above equation can be denned as 

w% = *r%(tm®INf (3.108) 

or 

wTO = (fm ® IJV) wm = fm ® wm. (3.109) 

This gives the alternate form of the adaptive processor's output, 

zm = w£%. (3.110) 
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We can use the SINR as a comparison of the FTS algorithm to fully adaptive STAR Substi- 

tuting Eqn. (3.109) into Eqn. (3.91) results in an SINR for Doppler bin m, 

*% 
SINRm = 

(fm®wm)H(bi(ö;)®a<; 

(fm®wm)FR(fm®wm) 
(3.111) 

This equation can be further simplified by substituting the FTS weight vector wm from Eqn. (3.104) 

into Eqn. (3.111), 

°Ht St 
SINRm = 

(f^R^gt)    (bt(w)®at) 
(3.112) 

(fm © &m gt)     R (fm © Rm gt) 

where gt is the tapered spatial steering vector, 

gt = t„ © at. (3.113) 

Figure 3.20 compares the SINR Loss LSINR for the FTS algorithm using several different 

Doppler filter bank tapers, t&. No taper has been used in the spatial domain. Since there are 18 

pulses in the CPI, the Doppler filter contains 18 bins. There is an SINR expression for each bin. 

The figures plot the envelope of all the SINR expressions for each bin. As the figure illustrates, 

the lower sidelobes in the Doppler filter bank increase the SINR. This trend is expected since the 

primary benefit of the lower sidelobes is suppression of the interference. 

Figure 3.20 also brings forth an unexpected point. As the quality of the Doppler filter increases 

(as measured by the lower sidelobes due to the window function used), the performance of the FTS 

algorithm approaches the optimum for fully adaptive STAP. The non-adaptive Doppler filter is 

performing almost as well as the adaptive Doppler filter. The trade-off occurs on the edges of the 

normalized Doppler spectrum. Considerable roll-off occurs above Q = 0.8 and below Q = 0.2 for 

the Blackman Harris Doppler window. 

3-53 



FTS SINR Loss Comparison 

10 

20 

/-v  30 

m 

^ 40 

1/1 

50 

60 

70 

80 

f    ■■ 
.      i— i     i     i 

■> 1                       / >                        \ 

/ 
\ 

\ \ \ 
/ - * \. 

*s » 
/ \ /               ' \ 

/          s- - s /          / 
/       / ,%, .•■• .* *•* .**. .•*•» .••• ... >        \ /    ... .• •»* **   * .. ... '..• ••-...v,   \ 

,          4 

,'   .•>' \  \ 
/       ' X   *   ' 

/''' 
I •» 

''                                                                        ^          / 

j' i NY Vv< 

1
1
.

 

Optimum 
Blackman 
Hanning 
Hamming 
None 

v ■ 

i      ■  1    „       .1 ■ i ■            i L_ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Normalized Doppler 

Figure 3.20 Comparison of LSINR for the FTS algorithm with four Doppler Filter 
bank windows and no spatial taper. The optimum SINR curve corresponds to a 
fully adaptive algorithm (18 x 18 = 324 DOF) with no tapers. The FTS algorithm 
is adaptive in the spatial domain only, resulting in 18 DOF for this example. The 
Blackman Harris window results in the greatest SINR for the FTS algorithm because 
of the -92 dB sidelobes. The Hamming and Hanning window sidelobes are -43 dB 
and -35 dB, respectively. The greater sidelobe roll-off of the Hanning window (-18 
dB/Octave) allows it to outperform the Hamming window (-6 dB/Octave). Window 
parameters taken from Harris [11]. 
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Figure 3.21 Comparison of LSINR for the FTS algorithm with four Doppler Filter 
bank windows and the same spatial window as the Doppler window. The introduc- 
tion of the spatial taper reduced the SINR as expected. The optimum SINR curve 
corresponds to a fully adaptive algorithm (18 x 18 = 324 DOF) with no tapers. 
The FTS algorithm is adaptive in the spatial domain only, resulting in 18 DOF for 
this example. The Blackman Harris window used both in the non-adaptive Doppler 
filter and the spatial taper results in the greatest SINR for the FTS algorithm be- 
cause of the -92 dB sidelobes. The Hamming and Hanning window sidelobes are -43 
dB and -35 dB, respectively. The greater sidelobe roll-off of the Hanning window 
(-18 dB/Octave) allows it to outperform the Hamming window (-6 dB/Octave). 
Window parameters taken from Harris [11]. 

As a final comparison, a spatial filter matching the Doppler filter was added to the FTS 

algorithm. These SINR Loss plots are shown in Fig. 3.21. Each curve shows a decrease in SINR 

due to the addition of the spatial taper. 

3.6   Summary 

This chapter introduced the basic fundamentals of fully adaptive STAR The fully adaptive 

algorithm discussed placed a null at zero degrees azimuth to suppress mainbeam clutter. It also 

placed nulls on any barrage noise jammers present. However, one point not addressed is how the 
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radar informed the operator of the position of the antenna nulls. If the algorithm did a very good 

job of filtering out the noise jammers, it seems theoretically possible for the radar operator to 

receive no indication of any targets coming in at that azimuth/elevation (they would be filtered 

out). An obvious ECCM tactic would be to equip an aircraft with a barrage noise jammer. A radar 

equipped with this algorithm would never know the target was there. 

Other items of interest were the series of nulls in the antenna pattern. These graphs not 

only showed the deep antenna nulls at jammer azimuths and zero Doppler (mainbeam clutter) but 

also a series of nulls (13 of them) across the azimuth range. These nulls range from -50 to -70 dB 

compared to the -90 of the jammer nulls. These nulls not only filter out undesired returns but also 

any desired returns at these azimuths. The Doppler pattern suffers the same problem. 

Because of the computational issues associated with the fully adaptive STAP algorithm, 

the partially adaptive FTS algorithm was introduced. There are many other reduced dimension 

algorithms available, this one was introduced because of its simplicity and value in explaining 

reduced dimension concepts. 
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IV.  Reduced Dimensionality Through the Cross Spectral Metric Algorithm 

4.1   Introduction 

As mentioned previously, Ward's [21] work serves as an excellent tutorial for STAP. Chap- 

ter III is a summary of this work, serving to introduce the basics of STAP and develop an under- 

standing of the important issues. This next chapter delves deeper into the knowledge required to 

meet the main objective of the thesis: determination of the secondary data support required for one 

of the recent approaches to reduced dimension STAP. A secondary objective involves determining 

the effect of non-homogeneities in the secondary data of this model. This objective also requires 

the information found here. 

The Cross Spectral Metric (CSM) algorithm just recently introduced by Goldstein [6] was 

chosen as the algorithm of study. There are several reasons for this choice. The foremost reason 

is its deviation from the standard Sample Matrix Inversion (SMI) approach found in Chapter III. 

By deviating from this approach, the algorithm brings into question the applicability of work done 

by Reed [15] on required secondary data support. 

The introduction of the CSM algorithm begins with a brief exploration of some of the funda- 

mental papers in the field of reduced dimension STAP. From here it progresses into formulating the 

direct form STAP problem as described in Chapter III into a generalized sidelobe canceler model. 

This model allows an easy development of the CSM algorithm. 

4-2   Fundamentals 

In light of these goals, let's begin by mentioning one of the fundamental papers in this field. 

This article [2] developed the expression introduced in Chapter III for the optimum antenna weights 

in the adaptive processor. As shown by Brennan and Reed, the probability of false alarm PFA and 
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probability of detection PQ for a signal model given by x = v + n are 

PFA    =   e   2 

where w represents the complex valued weight vector for the adaptive processor, v the desired 

signal vector or space-time steering vector, n the noise vector composed of zero mean samples with 

covariance matrix R, and ß is a normalized threshold. The Q function is defined as 

r°° 2, 2 
a,ß)=        ve'*-^- I0{av)dv, (4.2) 

h Q{< 

where Jo (a;) is the modified zero-order Bessel function of the first kind. These expressions were 

developed by first deriving the likelihood ratio test for the detection of a target in the presence of 

noise and then applying the optimum Bayes test. This is the origin of the parameter ß. Since the 

parameter is not of particular concern to this discussion, it is only mentioned in passing here. 

Brennan and Reed then proceeded to maximize the above expression for PQ. They first 

proved the function given is a monotonically increasing function of a = Jw^ , thereby showing 

the probability of detection will be highest for the filter w that maximizes a. The second parameter, 

ß, is of no concern because it is the normalized threshold from the optimum Bayes test and will 

remain constant. 

Since they had already proven PD (a) is monotonically increasing for a, it follows the function 

is also increasing for a2. Squaring a shows it is the Signal-to-Noise-Ratio (SNR), 

lwTvl2 

a  = ^HW~- (4-3) 
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The problem of maximizing the probability of detection has now been shown to be equivalent to 

maximizing the SNR, an important insight. Because the noise covariance matrix is Hermitian 

(R = R-^), then it can be diagonalized through the use of a unitary matrix. This is the eigenvalue 

decomposition of R. Using this decomposition, Brennan and Reed showed the maximum SNR is 

obtained by letting 

w = fcR-V, (4.4) 

where k is a complex valued constant. This is the unconstrained maximization of the SNR. The 

maximum SNR is easily found through substituting (4.4) into (4.3), 

maxw (|)   =v*R-iv. (4.5) 

Previously (see Chapter III) the optimum adaptive processor weights were denned as R-1v, 

where the conjugation operation on the steering vector v seems to be missing. The difference arises 

because Brennan and Reed define the output of the adaptive processing filter as y = wT% instead 

of y = wHx- Carrying this difference through their equations results in the same expression. 

Equation (4.4) is the basis for full dimension STAR Because of the large dimensionality 

associated with the interference covariance matrix R, the computational complexity of inverting 

it is still too cumbersome for real time operation. Furthermore, the fluid airborne environment 

necessitates estimating R from data obtained within a Coherent Processing Interval (CPI). The 

estimate itself is difficult to obtain because the amount of secondary data needed when the number 

of Degrees Of Freedom (DOF) retains full dimensionality. 

Considering these practical road blocks, Brennan and Reed discuss alternative methods of 

implementing the optimum adaptive filter. In particular a discussion of the method of steepest as- 
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cent is proposed. However, better methods have arisen since the paper was written. This discussion 

will now focus on one of those. 

4-3   Translating Direct Form STAP into a Generalized Sidelobe Canceler Form 

Due to the computational burden associated with retaining full dimensionality and using 

all DOF within the adaptive processor, an optimum method is needed to generate a reduced 

dimension algorithm. The objective is to trade DOF for the ability to estimate the covariance 

matrix and calculate its inverse in real time, subject to both the physical and computational 

constraints associated with an airborne radar system. 

The heart of a reduced dimension STAP algorithm is throwing away DOF. Determining which 

DOF are the most important for the current interference plus noise covariance matrix estimate is 

the problem at hand. For example, the Factored Time-Space (FTS) method simply throws away 

all Doppler DOF by non-adaptively filtering in the temporal domain. Absolutely no consideration 

is given to the impact this approach has on the ability to effectively null out the significant sources 

of interference. Poor selection can result in the adaptive processor expending all DOF to null out 

a large clutter source, with nothing left over to form a mainbeam in the direction of the target. 

Goldstein and Reed have come up with an optimum way to select a reduced subset of the 

DOF. This subset maximizes the ability of the adaptive processor to null out large sources of 

interference, i.e. it maximizes the Signal-to-Interference plus Noise Ratio (SINR). First, begin by 

defining the normalized space-time steering vector s as 

8 = 
VW^<) /4 gN 

where v was previously defined in Chapter III as the Kronecker product of the spatial and temporal 

steering vectors, a(i?t) and h{Qi) respectively. 
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The purpose of any adaptive processing algorithm for a radar is to enhance target detection 

through maximizing the probability of detection PQ and minimizing the probability of false alarm 

PFA- A more complete discussion of these two metrics and the associated hypothesis testing is 

found in Appendix C. Goldstein breaks the detection problem into two parts. 

• First, the output SINR of the adaptive processor is maximized subject to the constraint of a 

normalized response in the direction of the steering vector. 

• Second, the output of the adaptive processor is then subject to the hypothesis testing mech- 

anisms mentioned above and discussed in detail in Appendix C. 

As developed by Reed [2], the unconstrained optimization of the SINR was given in Eqn. (4.4), 

where the coefficient k was a complex valued constant. The problem with this solution is there 

is incidental cancellation of the desired signal returns. Applebaum then developed a method to 

calculate the optimum adaptive processor weights subject to the constraint of a normalized response 

in the direction of the steering vector. These adaptive weights are given by [1] 

WsiNR = ?Öi=V <4-7) 

where the constraint is WgjNRs = 1. Substituting the above expression into the constraint shows it 

is satisfied. The output y of the adaptive processor is then 

W£NRY;=PJIFIJ. (4.8) 

Next, direct form STAP is transformed into a Generalized Sidelobe Canceler (GSC) form by 

Goldstein. Consider the use of a unitary NM x NM transformation matrix T, where N and M are 

the spatial and temporal degrees of freedom. The resulting output SINR after this transformation 

is identical to the direct form processing architecture, where y = w|JNRx- Figure 4.1 shows a block 

diagram of the direct form model. 
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Figure 4.1     The direct form adaptive processor block diagram showing the opti- 
mum constrained filter weights. 

The form of the unitary transformation matrix T is 

,ff 
(4.9) 

where B represents a blocking matrix. The blocking matrix projects the data vector x onto the 

null space of the steering vector s, i.e. Bs = 0. Therefore, B blocks the desired signal and allows 

all other signals to pass. The size of the blocking matrix is NM - 1 x NM. Any full row rank 

matrix satisfying Bs = 0 is a valid signal blocking matrix [7]. See Appendix B for a discussion on 

determining the blocking matrix. Using these definitions, the transformed data vector is 

X = Tx 
sHX 

BX 

(4.10) 

where b is denoted the noise-subspace data vector because it contains the projection of the data vec- 

tor onto the noise subspace. A block diagram of this new model is shown in Fig. 4.2. Haimovich [10] 
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Figure 4.2     A block diagram of the blocking matrix concept used in the formula- 
tion of the GSC model of STAP. 

discusses determination of the signal blocking matrix for a uniformly spaced array and spatial steer- 

ing vector. 

The covariance matrix of the data is found through the following manipulations, 

R* = S {XXH} = £ {TXXHTH} = T£ {xxH} TH = TRT* (4.11) 

Then substituting Eqn. (4.9) into Eqn. (4.11) results in 

% = 
,H 

R s   B H 
sffRs s*RBff 

fT2        TH 

BRs BRBff 
Tbd     Rb 

(4.12) 
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where this partitioned matrix's parameters are implicitly denned when transitioning from the next 

to last step to the result, i.e. 

cx\   =   s^Rs, 

rbd   =   5{bd*} = BRs, 

Rb    =   S {bbff}=BRBjy. (4.13) 

Now let the transformation matrix T operate on the steering vector. Since the steering vector 

was normalized previously a unit vector results, 

Ts: 
B 

s = 
sffs 

Bs 
= 

1 

0 

0 

= ei. (4.14) 

Given these definitions, the optimal weight vector for the GSC adaptive processing model 

WGSC becomes 

R* s 

WGSC = -TT-a-i- 
R^l 

efR- ei 
-wb 

(4.15) 

where s is the transformed steering vector and the weight vector Wb is to be defined shortly. This 

form of the problem is best viewed in a block diagram format, where the reasoning for the 1 at 

the beginning of the weight vector WGSC becomes readily apparent. Figure 4.3 shows the block 

diagram. 

As the figure visually illustrates, the incoming signal is projected onto the steering vector. 

This projection passes the component of x that contains the target and any noise or interference 
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Figure 4.3     The full dimension GSC block diagram showing the transformation matrix T 
and the GSC optimum weight vector WGSC • 
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that projects onto s. The output of this operation is the scalar containing the desired component, 

d. Assuming the incoming data is the desired steering vector, i.e. there is a target in the direction 

the radar is looking, then x becomes s and d is equal to sffs. This is the output of a filter with 

complex weights s. These weights give a maximum response in the direction of the steering vector 

s. Hence, the output is an estimate of the desired signal. 

The operation of the GSC model can be viewed in two steps. The upper branch estimates the 

incoming signal at the direction of interest. Since there is also noise and interference coming from 

this direction (and all directions), the target estimate is corrupted by the noise and interference. 

The lower branch of the GSC attempts to estimate the noise and interference from the statistics 

of the remaining data not oriented in the direction of the steering vector. The incoming data 

vector is projected onto the subspace of the blocking matrix B. This blocks any components of 

the incoming data vector matching the steering vector since Bs = 0. The weight vector Wb is 

then applied to b, a vector containing only the noise and interference. These weights basically 

generate an approximation to the interference contained in d based on the interference in b. This 

interference estimate is then subtracted from the signal plus interference and noise in the upper 

branch resulting in an ideally pure target/signal estimate corrupted only by noise applied to the 

radar's threshold detection. 

The optimum value of the weight vector Wb shown in Fig. 4.3 and Eqn. (4.15) is determined 

by the Wiener solution [8], 

wb = Rb_1rbd, (4.16) 

where the cross correlation vector and autocorrelation matrix were defined previously. 

Figure 4.3 is the model of fully adaptive STAP using the GSC. Just as before, the compu- 

tational costs drive the need for a reduced dimension application.   Some of the features of this 
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model will be used to develop a reduced dimension algorithm producing a maximum SINR with 

the available DOF. 

Since the purpose of the lower branch of the GSC is to gain an estimate of the interference 

contained in the upper branch, the development now assumes x 1S interference only. This allows 

the analysis to parallel that of a Wiener filter, the upper branch being the desired component d 

(interference only) and the lower branch the interference estimate d. Using this interpretation, the 

output of the GSC is the error between the interference estimate and the true interference value. 

However, it is important not to lose sight of the fact that the target signal is generally included in 

d also. 

Care must be taken to distinguish interference from noise in this development. Interference is 

meant to include all correlated undesired components while the term noise refers to all uncorrelated 

undesired components. This distinction is made because only the correlated components can be 

filtered. This limitation is a direct result of the filter being based on the statistics, or correlation, of 

the secondary data. For the interference estimate to accurately reflect the true interference in the 

desired signal, the interference samples in the secondary data must be correlated to the interference 

found in the desired signal. 

Now that a suitable model is available, let's analyze it's use in a reduced dimension application. 

From this analysis, we can then choose a suitable metric for selecting which DOF maximize the 

output SINR with reduced dimensionality. First, express the covariance matrix Rb for the data 

vector b in terms of its eigenvalue/eigenvector decomposition. This decomposition is given by 

Rb = UAU* (4.17) 

where U is the unitary matrix containing the eigenvectors and A is the diagonal matrix containing 

the eigenvalues. In the derivation of the following equations, the unitary property allows the use of 

UHU = UUH = I. The size of U and A is (NM - 1) x (NM - 1). Now, if we project the vector 
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b to a different coordinate space using the unitary matrix of XJH, 

p = VHb, (4.18) 

then we can start viewing the matrix U in terms of reducing the dimension of the problem. Let's 

first examine the statistics of p, the vector Goldstein [6] refers to as a principal coordinate process. 

The covariance matrix Rp of p is given by 

RP = £{ppH}=UffRbU = A. (4.19) 

The cross correlation between p and d is 

rpd = S{pd*} = VHrbd. (4.20) 

And finally, the Wiener-Hopf solution for the optimum weight vector wp in the full dimension GSC 

with the eigenvector matrix projection is 

wp = Rp_1rpd = U*wb. (4.21) 

A block diagram of the full dimension GSC model using the full eigenvector matrix as a 

projection is shown in Fig. 4.4. The output of the GSC model can be inferred just from the 

diagram alone or by going back through the equations. This output is 

y=(sH-wgB)X. (4.22) 

At this point in Goldstein's derivation, the GSC model is still using the full dimensionality 

of the problem. DOF reduction is performed through the use of the unitary transformation matrix 
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Figure 4.4     The full dimension GSC block diagram with eigenvector projection. 

of eigenvalues U. In the case of reduced dimensionality, only a subset of the columns of U are 

used. This subset of the total number of eigenvectors gives the new transformation U a size 

of (NM — 1) x O, where U is composed of O columns of U. Multiplying b by U reduces the 

dimension to O. A block diagram of the reduced dimension GSC model is shown in Fig. 4.5. As 

inferred by the figure, the output of the dimension reduction z is defined as 

z = UHh. (4.23) 

The next problem is determining which eigenvectors represent the best choice for the con- 

struction of U. Goldstein begins this process by looking at the reduced dimension covariance matrix 
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Figure 4.5     The reduced dimension GSC block diagram using O eigenvectors as a projec- 
tion. 
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R* 

Rx=UHRhU = Ao, (4.24) 

where Ao is the diagonal matrix composed of the eigenvalues corresponding to the eigenvectors 

used to construct U. The cross correlation vector rBd between the reduced dimension noise subspace 

vector z and d is 

rxd = S{zd*} = UHrbd. (4.25) 

Using these statistics, the Wiener solution wa for the O dimensional weight vector is 

wz = R*-1!^ = Aö^Tbi. (4.26) 

All of the structures necessary to build the adaptive filter are in place. The only issue in need 

of consideration is the choice of eigenvectors used to compose the dimension reducing matrix U. 

Goldstein states [8] the most popular technique for this subspace selection is based on the principal 

components method. 

The principal components method chooses the set of eigenvectors resulting in the closest 

approximation to the the full covariance matrix Rb- This is the set of eigenvectors corresponding 

to the O largest eigenvalues of the matrix. The problem with this method is that it results in the 

optimum representation of the covariance matrix. This is not the point of the problem. 

The eigenvectors should be chosen to maximize the SINR of the adaptive filter. As shown by 

Goldstein, this selection is not necessarily the same as choosing the eigenvectors corresponding to 

the largest eigenvalues. This selection is more than just a function of the covariance matrix, it is 

also a function of the cross correlation between the beamformed signal d and the noise process b. 
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Goldstein provides the derivation of the optimum selection of the eigenvectors in another 

paper [6]. The eigenvectors are selected to satisfy a Minimum Mean Square Error (MMSE) criterion. 

The output of the full dimension GSC model was previously shown in Eqn. (4.22) to be 

2/=(s*-w*B)x (4.27) 

and the Wiener-Hopf solution was shown in Eqn. (4.16) as 

wb = Rb-^bd. (4.28) 

Using these two equations, the MMSE P is 

P = £ {\y\2} = a\- r&Rb-1^, (4.29) 

where the cross correlation vector and covariance matrix of the transformed data vector were 

defined previously. The MMSE is conserved by a unitary transformation [6], therefore the MMSE 

associated with the full dimension GSC model shown in Fig. 4.4 remains the same. 

Goldstein uses the term MMSE because we are considering the case of noise interference only. 

Using this assumption, the output of the GSC model should be zero given a perfect estimate of 

the interference. Hence, at this point in the derivation any output of the GSC is an error in the 

interference estimate. 

Denote the output of the reduced dimension GSC model as yr, following Fig. 4.5. The output 

in terms of the transformed data vector b is 

yr = d-yx=d- w?UHb. (4.30) 
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Adding and subtracting the output of the full dimension GSC does not modify the equation, 

yr = y-y + d-yx. (4.31) 

Referencing Fig. 4.4 shows we can write y as d — yp. Therefore, substituting for one of the terms 

gives 

yr = y - d + 3/p + d - yz = y + yp - yx, (4.32) 

or in terms of the matrices already defined, 

Vr = 1   v?%VH - vf?UH (4.33) 

Using this expression, the (NM - 1) x 1 vector e representing the error between the reduced 

dimension weight vector and the full dimension weight vector is defined by Goldstein as 

e = Uwp -Uwz. (4.34) 

With these forms, the mean-square value of the reduced dimension GSC model output is 

S{\yrn=S{\y + eHb\2}, (4.35) 
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Expanding the quadratic uncovers the error found in the full dimension GSC model plus terms due 

to the reduced dimensionality, 

e{\y + eHb\2}    =   £{(y + eHb)(y + eHb)H} 

=   s{\y\2 + ybHe + y*eHb + eHbbHe} 

=   P + eHRh
He + S{ybHe}+S{y*eHb}. (4.36) 

Ridding ourselves of the last two terms is interesting. Using Fig. 4.4 as a reference, examine the 

purpose of the model. The only input under consideration at this point is that of the interfernce. 

Therefore, the lower branch is an estimate of the interference in the upper branch and the output 

y is simply the difference between the estimate and the true value, 

y = d-d. (4.37) 

Again using the figure, the estimator is based on the noise/interference projection vector b such 

that d = wp^U^b. The full dimension Wiener filter was already determined in Eqn. (4.21) as 

wp = Rp_1rpd = UHwb. (4.38) 

Therefore, the noise estimator becomes 

d = w^UUffb = w£b, (4.39) 
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where the property V\JH = I is invoked for the unitary matrices. Using the Wiener solution for 

the above filter found in Eqn. (4.16), the estimator can be rewritten as 

d = rgdRh-
1b, (4.40) 

where the Hermitian property of the covariance matrix has been invoked, i.e. Rb    = Rt>- 

Now let's examine the third term of Eqn. (4.36) using the expression for the estimate of d, 

£{ybHe]   = s{(d-£)hH}e 

= £{(d-r«dRb-
lb)bH}e 

= S{dbH}e-£\rgdRb-
1bbH}e 

= rrfbe - rbdRb~ Rbe 

= rg,e-r£,e 

= 0, (4.41) 

where the final result uses the fact r<jb = r^. The fourth term in Eqn. (4.36) can be shown to be 

equal to the Hermitian of the term just shown to equal zero, 

S{y*eHb}=£{ybHe}H, (4.42) 

hence it is also zero. 

It is interesting to note the above mathematics were not necessary to show the two terms are 

zero. Since the estimate of d is the result of a Wiener filtering operation, then by definition the 

error is minimized. This minimization is another way of stating the error, y = d — d, is orthogonal 

to the data vector b used to generate the statistics for the Wiener filter. Since y at this point is 
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an expression of the error between d and d, then y is orthogonal to b and their inner product is 

obviously zero. 

Either through the mathematical manipulation or the Wiener filtering rationalization, the 

expression in Eqn. (4.36) reduces to the one given by Goldstein [6] 

£{\yr\2} = S{\y + eHb\2} = P + eHRbe, (4.43) 

where P is the mean square output of the full dimension GSC model. This implies the error due 

to the dimension reduction is contained in the second term, eHRbe. Minimization of the error is 

done via minimization of this term. 

At this point in the derivation, we deviate from Goldstein's development to one of our own. 

Let us begin the minimization by first expressing the error term explicitly, 

eHRbe = (w%VH - wf UH^ Rb (Uwp - Ww.). (4.44) 

The covariance matrix Rb was the subject of the previous eigenvalue/eigenvector decomposition. 

Using this decomposition, we can substitute into Eqn. (4.44), 

effRbe = (w* UH - wf ttH) UAUff (Uwp - Mw.). (4.45) 

Distributing the unitary eigenvector matrices results in 

e^Rbe = (w^U^U - wf Uav) A (UffUwp - Uff«w.) (4.46) 
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and allows us to invoke the unitary property of the eigenvector matrix U to further simplify the 

error expression to 

eHRhe = (w* - w*Wffu) A (wp - UffWws) (4.47) 

If we pull the hermitian operation out so it operates on the entire left quantity and factor the 

diagonal eigenvalue matrix we see the equation is basically the magnitude squared of a simpler 

term, 

eHRbe   =    (wp - VHUwx)
H A* A2 (wp - UffWwz) 

=     A* (wp - VHUwx) 
2 , (4.48) 

where the | | operator denotes the magnitude of the vector. Because the covariance matrix R is 

hermitian, then Rb is also hermitian. For any hermitian matrix, the eigenvalues are real valued [3, 

page 119]. This allows us to take the hermitian of the diagonal eigenvalue matrix A2 without any 

{i "i H        i 
A2 >    = A5. Using Eqn. 4.48, minimization of the error term becomes 

min (eaRbe) = min j |A2 (wp - VHUwz) I*j = min {IA2 (wp - UffWwa) I} . (4.49) 

Now let's begin the analysis of this equivalent minimization term in the hopes of further 

simplifying it and developing an optimum method to choose the eigenvectors comprising the matrix 

U. First, distribute the eigenvalue matrix across the quantity, 

min (effRbe) = min j A*wp - A2UffMwJ2| (4.50) 
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From Eqn. (4.21) we can substitute for wp, 

lin (effRbe) = min j A*UFwb - A*UHl/wJ2 j . (4.51) min 

Using Eqn. (4.16) to substitute for the NM - 1 dimensioned weight vector Wb and Eqn. (4.26) for 

the 0 dimensional weight vector wz results in 

mm (effRbe) = min j |A*U^Rb-1^ - A^MA^W^rbdl2 j . (4.52) 

Since we previously denned the eigenvector/eigenvalue decomposition of Rb as UAU-^, then the 

inverse of Rb is 

Rb"1 = UA_1UH, (4.53) 

allowing us to substitute into Eqn. (4.52) and again invoke the property of the unitary eigenvector 

matrix, 

min (effRbe)    =   min jlA'U^UA^U^rbd - A^U^l/A^W^rM 2| 

=   minllA-^U^rbd-A^U^WA^M^rbdl2!. (4.54) 

The next step in the development involves the ordering of the eigenvectors and eigenvalues 

in the decomposition of Rb. This decomposition can be expressed in the form of a summation, 

NM-l 

Rb = UAU*=   J2  ^iVivf. (4.55) 
i=0 

Examining this form shows the ordering of the columns of U and A is totally insignificant as long as 

the eigenvalue/eigenvector relationship is maintained. At this point in the derivation, let us assume 
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the decomposition is ordered such that the first O columns of U and A contain the eigenvectors 

and eigenvalues corresponding to U. Then these two matrices can be written in the form, 

U   = 

A   = 

U   C 

A0 0 

0     ANM-I-O 

(4.56) 

(4.57) 

where C is the matrix of eigenvectors not contained in U, ANM-I-O is the diagonal matrix of 

eigenvalues corresponding to C, and 0 represents a matrix of zeros. 

Substituting this form of U into Eqn. (4.54) allows us to write 

min (eÄRbe)    = =   min < A-'ü^rw - A* I tKQlUHrhd 

—   min < A- = UHrbd-A* A^U  rbd 

' r      -I 2N 

=    min < A-ivHrbd-Ai 
Io 

0 
A O U    rbd 

* 

(4.58) 

where the final step takes advantage of the orthogonality of the eigenvectors. Furthermore, multi- 

plying the matrix [Io ; 0] by A 2 simply picks off the first O eigenvalues, 

min (effRbe) = min < A- = UHrbd 

A* 
Aö'M^rtd >, (4.59) 
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allowing us to further simplify the minimization by performing one more matrix multiplication, 

min (e^Rbe) = min < A-*Uffrbd - 
AÖ* lH U"rbd (4.60) 

To find the optimum method for selecting the eigenvectors to compose U, we need to expand 

the vector magnitude operation in Eqn. (4.60) to give a minimum error, min (e^ Rbe), equal to 

mm < 

' 
( 
A-iVHTbd - 

Aö = 
UHvbd 

H ( 

k \ 
0 

) V 
A-*UHrbd - 

AÖ5 

0 
UHThd 

y 
(4.61) 

Distributing the hermitian operation throughout the first quantity and using the fact that the 

eigenvalues are real1 results in the error expression taking the form 

min < (r&UA-i-r&ttJA-*    o]) 
/ 

A-*Uffrbd 
v 

UHrbd 

0 
) * 

(4.62) 

Further insight into the algorithm's error requires multiplying the two quantities as shown by 

min (e^Rbe)    =   min < r&UA-U-^rbrf + r&W A0
2    0 

A5* 

0 
UHThd 

-r&M A   *     0 A-'U\d-rb
ff
dUA-5 UHvhd (4.63) 

xThe eigenvalues are real because the eigenvalue decomposition was performed on the hermitian matrix Rf 
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Reducing this equation is a matter of recognizing we can substitute the vector magnitude, | | , of 

each quantity. First, rearrange Eqn. (4.63) so that min (e^Rbe) is equal to 

mm < (A-*U*rbd)* (A-*U*rbd) + 

/ V UHrbd 

H I V UHrbd 

\ 
0 

) \ 
0 

) 

-*%M A51   0 U^rw-r&U 
A51 

UHTbd (4.64) 

The first two terms are recognized as the magnitude of a vector. The second two terms require 

some manipulation to see they are also vector magnitudes. The following shows the first step in 

the manipulation of these terms, 

min in (e^Rbe)    =    min < A- = U*rbd 

A0
2    0 

+ 

An* 

A0
2WHrbd 

U*rbd - r£,U 
AÖ* 

0 

_i 
A0*UHrbd ► . (4.65) 

Distributing the eigenvector matrices U änd U results in 

min (effRbe)    =    min < 

Tbd 

A- = Uffrbd 

WA0
2    0 

+ A0
2W"rbd 

A0*W* 
-211H. rbd-rh

i
dUK0*K0*UuTbd (4.66) 
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where we have taken advantage of the fact that U was previously defined to have the form of 

U = [ li C ]. This form of the equation shows the last two terms are also vector magnitudes, 

min (effRbe)    =   minj|A-*Uff 

AQ
2
U

H 

fbd 

Tbd 

+ A0
5WHrbd 

A0*UHrbd > . (4.67) 

Since the second and fourth terms cancel, the next operation necessary is to simply distribute the 

cross correlation vector rbd on the third term as shown by 

min (e^Rbe) = min < A-^VHrbd 

A0*UHvbd 

0 

(4.68) 

The second term simplifies even further because it is the magnitude of a vector. The 0 matrix does 

not affect the magnitude of the vector and can be dropped resulting in 

min(eHRbe) = min j A~ = Uffrbd    - A0
2UHrbd\   V (4.69) 

The final step merely substitutes the summation form of the vector products shown as the operands 

of the | |   operation, 

min (e   Rbe) = min < 
NM-1     H 

t=l >fc 
(4.70) 

Prom this equation, the O eigenvectors comprising U should be selected according to the metric 

(4.71) 
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Choosing the O eigenvectors corresponding to the O maximum values of this metric will produce 

the minimum error in the reduced dimension algorithm, thereby producing the highest SINR. 

This is the same result as shown by Goldstein's work [6], which he designates the cross spectral 

metric. Due to the use of this metric, the algorithm is referred to as the Cross Spectral Metric 

(CSM) algorithm for reduced dimension STAP. Obviously, this greatly differs from the principal 

components method. If the eigenvectors of Rb are rank ordered vector according to Eqn. (4.71), 

then the selection of U is simply a matter of selecting the first O eigenvectors. 

The correlation between the desired signal and the noise projection vector rb<j is interpreted 

as the cross-spectral energy. Therefore, the metric basically measures the cross-spectral energy 

projected along the ith eigenvector. This energy relationship explains the squaring of the metric 

as shown in Eqn. (4.71). This energy comparison is an important consideration when trying to 

understand the advantages of the algorithm. The selection process solves the problem of inadver- 

tently choosing an eigenvector along which the signal has no energy, i.e. the signal is naturally 

experiencing a null in this direction. Because there is a natural null, the noise has no effect on 

the signal. Expending valuable DOF creating a null in the antenna pattern to filter this noise is a 

waste. Creating antenna pattern nulls in directions of natural nulls is the problem inherent in the 

principal components method of eigenvector selection. 

As validation of the mathematics, Fig. 4.6 compares the SINR for both methods using the 

interference plus noise covariance matrix R from the previous examples. The expression for the 

SINR is developed in Chapter VI, see Eqn. (6.20). The figure is included here to illustrate the 

improvement in algorithm performance when the CSM is used. 

Figure 4.6 shows the CSM method of choosing U clearly outperforms the method of principle 

components. The algorithm rapidly converges to the optimum fully adaptive SINR and outperforms 

the principal components method at all dimensions up to the point where both reach the optimum 

SINR. 
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Figure 4.6 A comparison of the reduced dimensionality SINR for the principal 
components and cross spectral metric methods. The interference plus noise covari- 
ance matrix R is the same as the one used to generate the SINR plots for Section 3.5. 
The cross spectral method results in a more rapid convergence to the optimum (fully 
adaptive) SINR than the principal components method. 
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In summary, Goldstein has shown the principal components method does not produce the 

optimum SINR for a reduced dimension adaptive processor. Instead, the CSM model as derived 

by Goldstein results in the maximum SINR. 

4-4   Summary 

In order to gain insight into the problem of choosing the best DOF for reduced dimensionality 

STAP, the CSM model by Goldstein was examined in detail. This led to the cross-spectral metric, 

a method that results in the maximum SINR for a reduced dimension algorithm. 

The basis for the cross spectral metric is the use of a subset of the eigenvectors of the 

interference plus noise covariance matrix Rb as the reduced dimension projection matrix. The 

cross spectral metric then produces the optimum SINR for this projection matrix. If a different 

projection matrix is used, it is reasonable the SINR could be further improved. 

The CSM algorithm is computationally expensive. The NM — 1 dimension covariance matrix 

Rb must first be determined. Further compounding the burden is the eigenvalue/eigenvector 

decomposition of this matrix, required to build the reduced dimension projection matrix U. Savings 

in required secondary data support are not obvious because they come about through the Maximum 

Likelihood Estimator (MLE) used to estimate the covariance matrix R. 

If the secondary data support required for the CSM algorithm follows the work done by 

Reed [15], near optimum SINR performance should be obtained by only using 20 secondary data 

vectors for the estimate of R. Without the reduced dimensionality, NM secondary data vectors 

are required to reach optimum performance. Chapter V delves deeper into the MLE for R and also 

introduces the problems associated with non-homogeneities in the secondary data used to estimate 

R. Furthermore, a method of excising potential non-homogeneities is discussed and analyzed in 

detail for the FTS method. Chapter VI experimentally examines the CSM algorithm in terms of 

required secondary data support and the impact of non-homogeneities in the data. 
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V.   Covariance Matrix Estimation and Non-homogeneity Detection 

5.1   Introduction 

One of the primary difficulties encountered in the implementation of a practical adaptive 

processor is estimation of the noise covariance matrix. All of the algorithms discussed rely on the 

interference plus noise covariance matrix R for the adaptive weight calculation. Because of the 

rapidly changing environment encountered in an airborne platform, the noise statistics must be 

estimated from the data available. Furthermore, this estimate must be repeated for each range cell 

of interest. This repetition is necessary because the underlying assumption when examining each 

range cell is that there is a potential target within the range cell. This potential target represents 

a non-homogeneity in the data and should not be part of the estimate, even though a target does 

not necessarily exist at the range gate of interest. 

The data can be broken up into two main classes, the primary data consisting of the range 

gate/cell of interest and the secondary data consisting of everything else. The secondary data 

is used for estimating the noise covariance matrix. Anything other than noise represents a non- 

homogeneity in the data. These non-homogeneities can range in severity from a surface clutter 

transition (e.g. land clutter to sea clutter) to a strong target in a range cell other than the one of 

interest. 

In the adaptive filter developed to this point using the CSM algorithm or the development 

shown in Chapter III, the primary goal is to filter out the sources of interference. Any sources 

contained in the estimated covariance matrix will result in the adaptive filter expending Degrees 

Of Freedom (DOF) to build an antenna pattern with nulls on these sources. Some examples of 

interference sources desired in the covariance matrix include strong sources of clutter and barrage 

noise jamming. Conversely, the estimate should not include other targets. These targets waste 

valuable DOF building nulls with no real advantage in the detection of targets in the direction of 

interest. 
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5.2   Covariance Matrix Estimation 

The interference plus noise covariance matrix R is the foundation of the Wiener filter solution 

for the optimum weight vector w. In Chapter III, this matrix was assumed known. In the exam- 

ples shown in that chapter, it was estimated using the models developed in Sections 3.3.1, 3.3.2, 

and 3.3.3. However, the radar is now placed in the real world environment where all the parameters 

are constantly changing. The interference plus noise covariance matrix must be estimated from the 

data available. 

The Maximum Likelihood Estimate (MLE) R for the interference plus noise covariance matrix 

is 

l+J/2 

*i = j   E   XiXfiori^l, (5.1) 
i=l-J/2 

where the I subscript explicitly shows the estimate changes for each range gate, J is the number of 

secondary data vectors to be used in the estimate, and Xi is the ith range gate space-time snapshot 

or data vector. As done previously in Chapter III, the dependence on range will be implicit from 

this point forward and the I subscript dropped. Obviously, the best estimate is obtained using the 

maximum amount of secondary data vectors. This maximum is equal to the number of range gates, 

L. 

The interference covariance matrix R in the Wiener solution or weight vector for all of the 

STAP algorithms is replaced by the estimate, R. This replacement for fully adaptive STAP is 

w = R-1^, (5.2) 

where g< is the tapered space-time steering vector to the target.   If no taper is desired, vt is 

substituted. 
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An expression for the Signal-to-Interference-plus-Noise Ratio (SINR) is obtained by substi- 

tuting Eqn. (5.2) into Eqn. (3.91) to obtain 

SINR = 
*% gfft-1* 2 

gfR-iRR-igi 
(5.3) 

The problem with the use of this expression is the true interference covariance matrix R is generally 

not known. This is the reason for using the MLE in the first place. However, an estimate for the 

true interference covariance matrix R can be obtained by using all of the data vectors available to 

the MLE, whereas R would be obtained with some subset of these secondary data vectors. 

The obvious question arising from the use of this MLE concerns the performance degradation. 

This performance degradation is directly related to the number of secondary data vectors, J, used 

in the MLE. Reed found this loss in SNR [15] as 

LSNR = -101og10 
J + 2 - JVDOF 

J + l 
(5.4) 

where iVboF is the number of Degrees Of Freedom (DOF). Using this equation, performance within 

3 dB of the optimal SNR given a known covariance matrix can be obtained by choosing J equal 

to [15] 

J = 2NBOF -3» 2iVDOF. (5.5) 

This is equivalent to a total secondary data set size of approximately 2iVDOF- However, this result 

was developed by Reed for Sample Matrix Inversion (SMI) algorithms, i.e. the fully adaptive 

algorithm discussed in Chapter III. The nature of the FTS reduced dimension algorithm also 

allows the use of Eqn. 5.5. The particular point allowing the use of this sample size approximation 

is the FTS method computes the covariance matrix after the Doppler filtering operation. This 

filtering operation simply results in a new data set for the adaptive algorithm. From that point 
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onward, the computation of the weight vector is similar to that of a fully adaptive algorithm. The 

interference covariance matrix is estimated from the Doppler filtered data and then inverted in the 

process of forming the weight vector. The technique still falls under the SMI umbrella. 

The CSM algorithm developed by Goldstein differs from the SMI techniques introduced by 

Ward [21] and Reed [2,15]. As discussed in Section 4.3, the reduced dimension CSM algorithm 

requires the full dimension covariance matrix. The eigenvalue decomposition of this matrix is 

performed and then used to generate a reduced dimension covariance matrix. This matrix is then 

inverted in the computation of the optimum weight vector. The concerns with applying Eqn. 5.5 to 

the CSM reduced dimension algorithm are analyzed in detail in Chapter VI. This chapter focuses 

on understanding the MLE and its limitations. 

A more fundamental problem with the MLE estimator is its assumption of independent, 

identically distributed (iid) data. This assumption is not generally valid. This is the reason for the 

non-homogeneity detector proposed by Melvin [14]. 

5.3   Non-Homogeneity Detection 

As just explained, the MLE is based on the assumption the secondary data is iid. Generally, 

this assumption is not valid for real world data. Therefore, Melvin [14] introduced a method to 

select the vectors out of the entire set of secondary data that conform best to the iid assumption. 

Melvin begins by defining homogeneous data. Given the covariance estimate from two differ- 

ent range cells i and j, 

R* = £{XiXi } and R, = £{Xjxf}, (5.6) 
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then a homogeneous set of data satisfies [14] 

RiRT1 «INM, (5.7) 

where NM x NM is the dimension of the interference covariance matrix. The number of pulses 

in a Coherent Processing Interval (CPI) and number of antenna channels are denoted M and N, 

respectively. 

Considering the other side of the problem, the secondary data vector is defined in terms of 

the components it contains, 

Xi = Xci + Xji + Xni + Xoi- (5-8) 

The components representing the homogeneous data are the homogeneous clutter component Xc%-> 

white noise jamming Xji> and uncorrelated noise xni- The non-homogeneous component is repre- 

sented by Xoi and consists of colored noise jamming and the non-homogeneous clutter component. 

Melvin proposes the Generalized Inner Product (GIP) 

9i = xf&j'Xi (5.9) 

as a method to determine a secondary data vector's degree of homogeneity. The matrix Rs repre- 

sents an interference plus noise covariance matrix estimate based on the entire secondary data set. 

The GIP is then calculated for every vector contained within the secondary data set, producing the 

scalar gi. The homogeneous data to be used in calculating the new interference covariance matrix 

estimate is then determined by choosing those vectors corresponding to 

9-Ag<9i<g + Ag, (5.10) 
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where g is the average of all the GIPs for the secondary data set and Aä is chosen large enough 

such that only 20 secondary data vectors satisfy the relationship. A good selection scheme might 

be to rank in ascending order the secondary data vectors according to the absolute value of their 

associated GIP with the mean GIP removed. The selection of the most homogeneous is then just 

a matter of choosing the first 10 vectors. 

To understand why the GIP works as a non-homogeneity detector, first rewrite Eqn. (5.9) in 

the form 

xf^Xi = (A. *%)*&. iXi = fta§Xi (5.11) 

where the square root of the matrix can be determined through its eigenvalue/eigenvector decom- 

position. The final term shown is the output power of a whitening filter operating on the data 

vector. If we denote the output of the whitening filter as x%> then the covariance matrix of this 

output is 

ft. = S {xiX?} = £ {ft. *Xixf Ä. *} = ft. *Rift. *, (5.12) 

where Rj represents the true covariance matrix of the data vector under test, Xi- Examining this 

equation shows that as the covariance matrix estimate R, approaches the true covariance matrix 

Ri, then 

Rj —► INM as R« —► Rj. (5.13) 

This relationship further solidifies the whitening filter concept. If the data is actually correlated 

according to the estimate Ra, then the data is successfully whitened to a zero mean unit variance 
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random vector. Hence, the expected value of the GIP becomes 

£ {9i} = £ {xf R.-1*} = S {xfXi} , (5.14) 

where x% 1S the whitened data. Since this data is now white and the data samples are assumed 

independent, then the inner product shown is the sum of the unit variances. Hence, 

£{9i) = £ {l*i[0]|2 + |*ai]|2 + • • • + \Xi[NM - 1]|2 } = NM. (5.15) 

Any deviation from this value flags a non-homogeneity in the data. 

Using this new knowledge about the homogeneity of the data, the MLE estimator for the Ith 

range gate can be rewritten as 

i 

where \P is the set of J vectors satisfying Eqn. (5.10). Although the above formula only stipulates 

i T^ I, typically two guard cells on each side of the range cell of interest are also removed from the 

secondary data used in the interference covariance matrix calculation. 

5.4   MCARM Example 

To illustrate the effectiveness of the non-homogeneity detector, an example is offered from 

the MCARM database. See the MCARM reports [18] for a description of the database and the 

flight tests used to generate the data. 

The data file used for this example is rd050465. Because of the limited size of the Coherent 

Processing Interval (CPI), the Factored Time-Space (FTS) algorithm was used.  The number of 
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range cells in the CPI supports the sample size requirement for the interference covariance matrix 

estimate R. 

A Blackman Harris window [11] was used for the Doppler filter. This window posesses excel- 

lent sidelobe level characteristics. The first sidelobe level is -92 dB with -6 dB/Octave roll-off from 

the first sidelobe [11]. 

The output of the Doppler filter is two dimensional. There is a Doppler filter bank for every 

range cell. Within each bank there are M bins, equal to the number of pulses in the CPI. Although, 

the output of the filter could be examined with a three dimensional plot, many of the important 

characterstics are not easily visible. For this reason, two figures are presented to describe the output 

of the Doppler filter. 

The Doppler filtering operation is performed for each antenna element. Therefore, there are 

N Doppler filters each with a two dimensional output. If we wanted to form a beam perpendicular 

to the antenna array (boresight), we could simply add the output of the Doppler filters together. 

However, the transmit direction for this data file is not boresight, it is 19.155° (reference the 

MC ARM data manuals for the coordinate system [18]). Hence, to examine the output of the 

Doppler filter at the target location we must form a beam in the direction of the target. The 

target location was conveniently chosen to correspond to the transmit direction of the radar. The 

beamforming operation is exactly the same as that described in Chapter II. There is no spatial 

windowing used in the non-adaptive beamforming of the Doppler filters. 

Figure 5.1 shows the output of the Doppler filter bank corresponding to range cell 450. The 

dimension is across the M bins of the bank (there are 128 pulses in the CPI and hence 128 bins in 

the Doppler filter bank). The filtering operation was performed on both the original data file and 

the data file with an artificial target inserted. The 22 (there are 22 antenna channels in the CPI) 

Doppler filters were beamformed to the transmit and target azimuth of 19.155° with no spatial 

windowing used. Table 5.1 presents the parameters of the target. The parameter of interest for 
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Beamformed Blackman Harris Doppler Filter Output 

60 
Doppler Bin 

Figure 5.1 The Blackman Harris Doppler filter output beamformed to the trans- 
mit angle of 19.155° for range cell 450. The artificial target is located at Doppler bin 
65. The effect of inserting the target into the data is clearly visible by comparing 
the two curves. 
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Table 5.1 Target parameters used for 
the GIP non-homogeneity detector exam- 
ple. 

Variable Value 

Range Cell 
Doppler Frequency 
Doppler Bin 
Azimuth 

450 
1000 Hz 

65 
19.155° 

this plot is the Doppler bin location of the target, bin 65. Examining the figure shows the effect 

of inserting the target into the data, a small spike at bin 65. Without the original data curve as a 

reference, it is impossible to determine the target exists at this point. 

The second dimension of the Doppler filter output is across the L (the number of range cells, 

630) filter banks. We are only interested in examining the output of bank 450, corresponding to 

the location of the target at range cell 450. Rather than plot across all 630 range cells, a small 

subset is chosen. In this case the subset is from cells 420 to 490. Because the target is located at 

Doppler bin 65, this is the bin chosen for the plot in Fig. 5.2. Both the original data and the data 

with the artifical target is plotted. Without the original data as a reference, detection of the target 

is not possible at this point. 

The amplitude of the target was chosen to highlight the advantage of an adaptive filter- 

ing/beamforming operation. Up to this point in the example, the presence of the target cannot 

be detected. Typically, a detection scheme would use Fig. 5.2 as a method to determine target 

presence. A threshold is set and target presence declared if the output amplitude of the Doppler 

bin of interest at the range cell of interest exceeds this threshold. At this point in the example, 

we have chosen an exceptional Doppler filter window (the Blackman Harris) and beamformed in 

the direction of the target. Yet we still cannot verify its presence. The only option left is window- 

ing in the spatial domain (in the non-adaptive beamforming operation). However, for comparison 

purposes to the adaptive FTS algorithm, spatial windowing will not be used in the example. 
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Beamformed Blackman Harris Doppler Filter Output 

450 460 
Range Cell 

Figure 5.2 The Blackman Harris Doppler filter output beamformed to the trans- 
mit azimuth of 19.155° for Doppler bin 65. The artificial target inserted at range 
cell 450 is not threshold detectable at this point, there are other peaks of higher 
amplitude. However, given the original data as a reference (the solid line), the 
target is clearly visible. 
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57.5 

52.5 - 

47.5 

42.5 

37.5 

420 

FTS Output 

430 440 450 460 
Range Cell 

470 480 490 

Figure 5.3 The FTS (with Blackman Harris Doppler filter) algorithm output. 
The target inserted at range cell 450, Doppler bin 65 is distinctly shown. The AMF 
CFAR test statistic, shown by the dashed line, illustrates a distinct improvement 
over the raw FTS output. This statistic also allows the use of a constant threshold 
based on probability of false alarm. 
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Now let's implement the FTS algorithm and examine the output for the target. See Section 3.5 

for a discussion of FTS. No spatial windowing is used in the implementation of the algorithm to 

allow easy comparison to the non-adaptive plots just presented. The Doppler filter is the same as 

that used above, the Blackman Harris. The number of secondary data vectors required (to give 

an output within 3 dB of optimum [15]) for the covariance matrix estimate is twice the number 

of DOF. Since the FTS algorithm is adaptive in the spatial domain only, there are 22 DOF (11 

over 11 channel array) and 44 secondary data vectors are required. For the FTS output shown 

in Fig. 5.3, these 44 vectors are chosen symmetrically about the range cell under test (using the 

same Doppler bin from each range cell), neglecting two guard cells on each side. For example, the 

covariance matrix estimate for range cell 450 and Doppler bin 65 (the target cell and bin) will use 

the secondary data vectors from Doppler bin 65 and range cells 426-447, 453-474. 

As Fig. 5.3 shows, the target is clearly visible at range cell 450. In fact, it is approximately 5 

dB larger than the next highest peak. Threshold detection would work well here, resulting in target 

detection. The problem with the raw FTS output is it does not posess a Constant False Alarm 

Rate (CFAR) property. For this reason, the output of the algorithm depends on the noise and a 

constant threshold cannot be set. Therefore, several test statistics have been introduced posessing 

the desirable CFAR property. This property allows a single threshold once probability of false 

alarm has been chosen. See Appendix C for a discussion of these test statistics and more details 

on the theory behind them. For this example, the Adaptive Matched Filter CFAR (AMF-CFAR) 

test was chosen. It is also plotted in Fig. 5.3, it's amplitude corresponds to the scale on the right 

side of the graph. The embedded CFAR characteristic also results in a greater separation between 

the target peak and the next lower peak. It is increased from approximately 5 dB to greater than 

10 dB. 

Now let us examine the output of the FTS algorithm when the GIP non-homogeneity detector 

is used. First, the interference covariance matrix is determined from the full set of secondary data. 
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Figure 5.4 The GIP and sorting statistic used to order the secondary data vectors 
according to homogeneity. The most homogeneous vectors are closest to the mean 
(the horizontal line). The sorting statistic is shown in Eqn. (5.17). This plot 
illustrates the sorting statistic results in the correct ordering of the secondary data 
vectors by GIP magnitude. 
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In this case, the secondary data set size was set to four times the required number of secondary 

data vectors. Therefore, the secondary data set size was set to 176. These 176 data vectors are 

chosen symmetrically about the range cell under test. Figure 5.4 shows the ordering performed 

using the GIP. The test statistic used to order the vectors was 

sorting statistic = \gi - g\, (5-17) 

where gi is the GIP for the ith secondary data vector and g is the mean of all the GIPs within the 

secondary data set. The figure shows both the test statistic and the true magnitude of the GIP. The 

test statistic does result in the correct ordering of the data vectors, since the most homogeneous 

are clustered about the mean. Choosing the 44 secondary data vectors according to this ordering 

results in those closest to the mean being chosen first as desired. Selection is merely a matter of 

choosing the first 44 secondary data vectors. 

Figure 5.5 is an alternate way of viewing the sorting process. The x-axis of the plot shows 

the sorted data vector number. This number is the order in which the data vectors are used in the 

MLE for the interference covariance matrix estimate. The y-ajds is the corresponding original data 

vector number in relation to the range cell under test. The value of 0 corresponds to the range cell 

under test, hence this data vector is not used in the MLE as illustrated by the absence of an asterisk 

along this line in the plot. The data in the plot is for range cell 490. Similarly, the two guard cells 

on each side of the range cell under test are also not used in the MLE. As the figure shows, the 

use of GIP ordering results in a drastically different set of secondary data vectors, since the first 

44 of the ordered set are chosen to generate the new interference covariance matrix R estimate. 

Also, the target in range cell 450 represents the most severe non-homogeneity in the data, hence it 

is chosen last as indicated by the arrow in Fig. 5.5. 

Figure 5.6 shows the output of the FTS algorithm when using the GIP non-homogeneity 

detector.   The target at range cell 450 is clearly visible and the difference between the target 
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Figure 5.5 A different viewpoint of the ordering process. The sorting data is from 
the interference covariance matrix estimate for range cell 490. Cell 490 corresponds 
to 0 on the j/-axis. This figure illustrates the impact of sorting the data vectors 
according to homogeneity. As expected, the target represents the most severe non- 
homogeneity and hence it is chosen last (data point shown by the arrow corresponds 
to cell 490-40=450.). 
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FTS Output with Non-homogeneity Detection 

450 460 
Range Cell 

Figure 5.6 The output of the FTS algorithm for Doppler bin 65 when using the 
GIP non-homogeneity detector. The target is clearly shown at range cell 450 with 
a difference of 7 dB to the next highest peak. The AMF CFAR statistic increases 
this difference to 13 dB. 
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peak and noise floor is considerably larger than without non-homogeneity detection. Figure 5.6 

also shows the output of the FTS algorithm when using the AMF CFAR statistic. Even more 

separation is obtained between the target peak and the noise floor. 

5.5   Summary 

This chapter introduced the underlying architecture behind determining the interference co- 

variance matrix estimate R from real world data. The estimate is obtained through the use of the 

MLE. However, the primary limitation to the MLE is the assumption of iid data. This assumption 

is not generally valid in the real world. 

Melvin's GIP was introduced as a method to detect non-homogeneities in the secondary data. 

The philosophy behind its operation was discussed in detail. As proof of its operation, an example 

using the MCARM database is shown in Section 5.4. The figures shown in this section illustrate 

the improvement obtained by using this non-homogeneity detector. 

Although the example presented in this chapter shows considerable improvement, an even 

greater improvement is obtained if a large second target is placed in the data. This second target 

corrupts the interference covariance matrix estimate for the range cell of the first, making the orig- 

inal target undetectable even using the AMF CFAR test statistic. Using the GIP non-homogeneity 

detector results in a target detection. 

The most significant drawback to the use of the GIP as a non-homogeneity detector is the 

computational cost associated. The interference covariance matrix must first be estimated for the 

entire secondary data set. Upon completion of this estimate, all of the secondary data vectors must 

be rank ordered. The final version of R is obtained using only the most homogeneous members of 

the secondary data set. The computational cost associated with this is immense. It severely offsets 

the gains associated with implementing the reduced dimension algorithm. 
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VI.  Analysis of the CSM Algorithm 

6.1   Introduction 

Previous chapters have explored the concepts of Space-Time Adaptive Processing (STAP) 

and extended the material through many examples and MATLAB® simulations. The thesis now 

focuses on satisfying the initial goals , determination of the sample support required for the Cross 

Spectral Metric (CSM) algorithm and its susceptibility to non-homogeneities in the secondary data. 

A second issue addressed is the question of sample support for the Maximum Likelihood Esti- 

mate (MLE) of the interference plus noise covariance matrix, R. As discussed briefly in Chapter V, 

the analysis done by Reed [15] applies to STAP methods using Sample Matrix Inversion (SMI). 

There are distinct differences between the SMI techniques and the CSM algorithm that bring into 

question the application of Reed's analysis. 

This chapter is organized into three main sections. The first section analyzes the performance 

of the CSM algorithm in terms of the Signal-to-Interference-plus Noise Ratio (SINR). The analysis 

is done for a known interference plus noise covariance matrix, R. This analysis gives optimum 

performance curves, where optimum signifies the curves represent an SINR upper bound for the R 

of interest. 

These curves serve as a foundation for comparing the results of the next section. This second 

section attempts to define the secondary data support required in the MLE to obtain a certain 

threshold of the optimum SINR performance. The analysis is done through the use of Monte Carlo 

simulation. 

The third section of this chapter examines the effects of non-homogeneities in the secondary 

data. As shown in Chapter V, the Factored Time Space (FTS) algorithm is susceptible to non- 

homogeneities in the secondary data. Here, the susceptibility of the CSM algorithm is examined 

and the Generalized Inner Product (GIP) non-homogeneity detector [14] is implemented with this 

algorithm. 
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6.2   SINR Comparisons for Known Covariance 

6.2.1 Fully Adaptive. Let us begin the analysis of the CSM algorithm through an ex- 

amination of SINR with known interference plus noise covariance R. The direct form and FTS 

algorithms of Chapter III are used for comparison. 

Prom Eqn. (3.91), the SINR in terms of the full dimensioned weight vector and R is 

smR=
g2Hw

p
gv*i, (6-1) 

where a2 is the noise power per element, £< is the target SNR per element, and v* is the un- 

normalized space-time steering vector. This equation can be applied to the CSM algorithm if the 

weight vector describing the entire model is developed. 

Deriving a weight vector that fully describes the CSM algorithm is rather simple. We will 

begin with the full dimension model. Begin by writing the output of the full dimensional CSM 

algorithm as 

y = d-yb, (6.2) 

where y is the output of the CSM algorithm, d is the output of the upper branch, and yt, is the 

output of the lower branch. Figure 4.3 depicts the model we are currently working with. From the 

development in Chapter IV and the block diagram in Fig. 4.3, we can write Eqn. (6.2) as 

V   =   sHx - yf"h 

=    (s*-w£B)x, (6.3) 
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where Wb is the MN — 1 dimensional weight vector and s is the normalized space-time steering 

vector, both from Section 4.3. The equation now fits the form of the standard fully adaptive 

algorithm y = wHx with the hermitian of the full dimensioned weight vector as 

= sH - Wb*B. (6.4) wH--H 

Substituting Eqn. (4.16) for Wb and taking the hermitian of both sides results in the following form 

for the full dimension weight vector, 

w = s - B^Rb-1!^. (6.5) 

We can now substitute this weight vector description of the fully adaptive CSM algorithm 

into the SINR expression of Eqn. (6.1). This substitution results in SINRCSM full given by 

SINRCSM MI = 
(s-BHRb-

1Thd)Hvt 

(s - B^Rb-
1rM)fl' R (s - BffRb_1rbd)' 

(6.6) 

where the subscripted SINRCSM full is to distinguish this expression from future expressions. 

Figure 6.1 shows a plot of Eqn. (6.6) versus normalized Doppier Q. For comparison to the 

SINR plots shown in Chapter III, both a2 and & have been set to 1 and the interference plus noise 

covariance matrix R was modeled using the same scenario as the examples in Chapter III. This 

scenario includes two noise jammers (located at -40° and 25°), clutter, and noise. The antenna 

array is composed of 18 elements and 18 pulses were used in the CPI. 

It is important to point out some potential pitfalls in using Eqn. (6.6). When plotting the 

equation, the steering vectors s (normalized) and v (un-normalized) are not the only parameters 

changing with normalized Doppier Q (and/or spatial frequency ■& if a plot of angle is desired also). 

Because the blocking matrix B is defined such that Bs = 0, then every time s changes the blocking 
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Figure 6.1 A plot of the fully adaptive SINR expression of the CSM algorithm 
versus normalized Doppler. The interference plus noise covariance matrix R is the 
same as the one used to generate the SINR plots in Section 3.5 (the CPI includes 18 
pulses and 18 antenna elements with R including effects from two jammers, noise, 
and clutter). As expected, this plot of the CSM algorithm fully adaptive SINR 
matches the model from Chapter III. 

matrix changes also. Therefore, it is also dependent on Q. Furthermore, the interference plus noise 

covariance matrix projection Rb is equal to BRB and cross correlation vector rbd is equal to BRs. 

Hence, Rb and rbd are also dependent on Q. This makes the calculation of SINRCSM full very 

intensive as the inverse of Rb must be recalculated at each Q. 

All of these pitfalls have been avoided in Fig. 6.1. As the figure depicts, the CSM fully 

adaptive model produces results very similar to the model developed in Chapter III. The only 

difference is the peak SINR of 25.01 dB, where the previous model generated a peak of 25.1 dB. 

The difference is likely due to rounding errors incurred in the more complex SINR expression for 

this model. 
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The same SINR examination can be computed for the full dimension CSM algorithm with 

eigenvector projection matrix U shown in Fig. 4.4. Examination of the figure shows the output of 

the model can be written in the same manner as the above work, 

y = d-yp. (6.7) 

The upper branch of the model is exactly the same as before, the projection of the incoming data 

vector on the normalized steering vector to give 

y = sHx - yP- (6-8) 

The lower branch output is the inner product of p and the weight vector, 

y = sBX- Wp^p. (6.9) 

Working backwards through the block diagram builds the expression allowing us to pull out the 

full dimension weight vector, 

y   =   sffx-Wp*Uffb 

=   8Hx-^pHVHBX. (6.10) 

The expression for the weight vector wp was previously introduced in Eqn. (4.21), 

Wp = Uffwb. (6.11) 
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Substituting this expression results in 

2/ = siix-wgUUaBx. (6.12) 

Since the eigenvector projection matrix U is unitary, the product UU'0 is the identity matrix. 

Furthermore, substituting for the weight vector Wb produces 

y = sH
X - rg,Rb

-1Bx. (6.13) 

Factoring out the incoming space-time snapshot (or data vector) x shows this expression is the 

same as that derived in Eqn. (6.5), 

y=(sH-rgdTlb-
1B)x (6.14) 

which implies that 

w = s - BffRb-1rbd. (6.15) 

The two forms of the full dimension CSM algorithm have been shown equivalent in SINR. 

6.2.2 Partially Adaptive. We have gained insight into the CSM algorithm through a 

comparison of its fully adaptive SINR to the fully adaptive SINR from the model developed in 

Chapter III. Let's gain further insight by examining the SINR for the reduced dimension model. 

Referencing Fig. 4.5 and Eqn. (4.30), the output of the reduced dimension CSM algorithm 

can be written as 

yr = d-yz = d-vr?UHb. (6.16) 
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Substituting for d and b in the above equation and factoring out the space-time snapshot x results 

in the form needed to formulate a full dimension weight vector describing the entire CSM algorithm, 

yr=(aB-w*UBB)X- (6-17) 

Prom this equation, the full dimension weight vector for the partially adaptive CSM algorithm is 

w = s-BHUwz. (6.18) 

Furthermore, we can substitute Eqn. (4.26) to obtain 

w = s - B^WA^H^rbd, (6.19) 

where Ao is the diagonal matrix of eigenvalues corresponding to the O eigenvectors used to compose 

U. These eigenvectors are chosen through two popular methods, the cross spectral metric as 

developed in Chapter IV and the principal components method. The principal components method 

simply chooses the eigenvectors according to the largest eigenvalue magnitude. However, as shown 

in Chapter IV this method does not result in the optimum SINR. 

The next step is to substitute the full dimension weight vector for the partially adaptive CSM 

algorithm into Eqn. (6.1). This substitution results in SINRCSM part given by 

SINRcSM part = 
(s-B^MA^M^rw)*^ 

(s - B*UAgUBT*lf R (s - B^WA^Z^rbd) 
(6.20) 

The same pitfalls exist here as in the equation for the fully adaptive CSM algorithm. The parameters 

s, v, B, U, Ao, and rbd all depend on Q. 
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Figure 6.2 Reduced dimension SINR using the cross spectral metric compared to 
full dimensionality. The dimension is 18 x 18/16 « 20. The full dimensionality is 
18 x 18 = 324 DOF. 

Figure 6.2 shows a plot of Eqn. (6.20) versus normalized Doppier Q. When compared to 

Fig. 3.20 for the FTS partially adaptive algorithm, the curve seems rather rough in texture. How- 

ever, this behavior does make sense. The FTS algorithm is adaptive in the spatial domain only, 

hence the ripples in the curves shown in Fig. 3.20 versus Q represent the bins in the Doppler filter. 

The partially adaptive CSM model is adaptive in both the spatial and temporal domains. Hence, 

the DOF are chosen from both. This selection does not necessarily result in a smooth pattern when 

plotted versus Q. However, the partially adaptive CSM algorithm chooses the DOF according to 

the cross spectral metric, resulting in the optimum SINR as shown in Chapter IV. 

At this point, it is interesting to compare the results to the those obtained in Chapter III 

for the FTS algorithm. Figure 6.2 corresponds to a partially adaptive algorithm with 20 DOF. 

Figure 3.20 corresponds to the FTS algorithm with 18 DOF. Comparing the two figures shows the 
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effect of a high quality Doppler filter on the FTS algorithm. The CSM algorithm is outperformed 

by FTS when either the Blackman Harris (-92 dB sidelobes, -6 dB/Octave roll-off) or the Hanning 

(-35 dB sidelobes, -18 dB/Octave roll-off) windows are used with the non-adaptive Doppler filter. 

The FTS algorithm performs better because the CSM algorithm simply cannot build the same 

quality filter with only 20 DOF. It must build a two dimensional filter whereas the FTS algorithm 

only has to construct a spatial dimension filter. Although the CSM algorithm doesn't produce the 

highest peak SINR, the curve is more nearly horizontal as a function of w. Adding a spatial window 

as shown by Fig. 3.21 does improve the performance of the FTS algorithm in this regard, however 

the maximum SINR is correspondingly reduced. Using the spatial tapering, the Blackman Harris 

FTS algorithm is the only one to outperform the CSM algorithm. 

6.3   Secondary Data Support for Covariance Estimation 

As mentioned in Section 5.2, there is some question as to the validity of applying Reed's 

analysis of secondary data support to the CSM algorithm. Reed has shown the number of secondary 

data vectors required to be within 3 dB of the optimal SINR when using the Sample Matrix Inversion 

(SMI) technique is approximately twice the DOF or J = 2NDOF- 

The analysis done by Reed is beyond the scope of this thesis, therefore secondary data support 

requirements were determined experimentally. The first step in the analysis required the production 

of a known covariance matrix R. For continuity in the thesis, the covariance matrix used in this 

analysis is the same as the one generated in Chapter III and used in all of the examples, with the 

exception of the MCARM (real aircraft data) examples found in Chapter V. This interference plus 

noise covariance matrix contains the effects of two jammers (located at -40° and 25°), clutter, and 

noise. 

The data is generated using the standard technique for building colored data from zero mean 

unit variance Gaussian samples. The first step is generation of the base samples with the desired 
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Gaussian distribution, 

x~jV(0,l), (6.21) 

where the notation shown is the standard for a zero mean unit variance Gaussian distribution and 

x is a column vector of length MN (the length of the space-time snapshot). 

If the desired covariance matrix (in our case, the one used in Chapter III) is denoted R, the 

Cholesky decomposition Q can be found such that 

R = QH Q. (6.22) 

Setting the space-time snapshot according to 

X = Q*x, (6-23) 

results in the data being colored according to R as desired. The tilde above x denotes it is different 

than the real space-time snapshot x- Proof that the covariance matrix is indeed R is easily shown. 

If the covariance matrix of the generated samples is denoted R, then 

R  =  £{xxH) 

= £{QHxxHQ} 

= Qff£{xxH}Q 

=   QffIQ 

=   QffQ 

=   R. (6.24) 
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Prom Chapter V and basic probability theory, we know the expected value in Eqn. (6.24) 

is simply the mean of an infinite number of samples. This gave rise to the Maximum Likelihood 

Estimator (MLE) for R, 

R=7£XiXf, (6-25) 

where J is the number of secondary data vectors used in the estimate. As J approaches infinity, the 

covariance matrix estimate R will approach R. Using this relationship, we can perform a Monte 

Carlo simulation at each secondary data set size J and determine experimentally the required 

secondary data support to achieve a certain SINR. 

As verification of the Monte Carlo simulation process, Fig. 6.3 is offered. The FTS algorithm 

is used with artificially generated space-time snapshots. This algorithm is adaptive in the spatial 

domain only. Since there are 18 antenna elements in this simulation, there are 18 DOF. Reed's rule 

predicts approximately 2NBOF secondary data vectors are required to achieve performance within 

3 dB of optimal SINR. 

In the experiment, there were 20 trials for each secondary data set size. The solid line 

depicts the experimental SINR Loss, LSINRJ for the secondary data set size shown on the jc-axis 

and is the mean of the values returned from each of the 20 trials. The averaging technique used 

is the arithmetic mean, signifying the mean of the samples is calculated in the native units. The 

conversion to dB is done after the mean has been calculated. The standard deviation of these 20 

trials is depicted by the dashed line. The standard deviation is also calculated in the native units 

and then converted to dB. The solid line in the figure reaches 3 dB of optimal with secondary 

data support between 30 and 35 vectors. As expected, these results coincide very well with Reed's 

prediction of 2 x 18 - 3 = 33. 

Figure 6.4 shows a Monte Carlo simulation for the full dimension CSM algorithm. Again, 

the solid line depicts the average XSINR for the 20 trials and the dashed line depicts the standard 
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FTS Algorithm with 18 DOF 

180 200 

Figure 6.3 The experimental LSINR curve versus secondary data set size for the 
FTS algorithm. There are 18 DOF, hence Reed predicts 33 secondary data vectors 
to achieve performance within 3 dB of optimal SINR. The Monte Carlo simulation 
indicates between 30 and 35 secondary data vectors are required, agreeing very well 
with Reed's prediction of 33. The analysis was done for Doppler bin 9 (of 18 bins), 
no windows/tapers were used. 
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deviation. Before examining the results shown in the figure, an explanation of the third curve is 

in order. This curve is characterized by the dash dot sequence and depicts the ratio of the mean 

SINR to the standard deviation of these experiments. When using the dB values, this ratio simply 

becomes the standard deviation subtracted from the mean. The ratio provides an indicator of the 

quality of the Monte Carlo simulation. 

Typically, a ratio of 8 to 10 dB signifies enough trials were performed in the simulation. Higher 

ratios correspond to higher confidence in the results. According to Fig. 6.4, the ratio indicates the 

20 trials used in the Monte Carlo simulation were adequate for this experiment. When the ratio is 

smaller as in Fig. 6.7, the LSINR curve is not as smooth. This smoothness is another indication of 

the quality of the experiment. Large differences in mean ZSINR as the sample support is increased 

suggest not enough trials were done in the experiment. Although Fig. 6.7 exhibits a small ratio, 

the mean £SINR values do not exhibit exaggerated differences as the secondary data support is 

increased. Therefore, the number of trials was not increased for the experiments. The ratio curve 

was omitted from Fig. 6.3 because the values were on the order of +30 dB, well above the scale 

used for the standard deviation curve making it undesirable to add this third curve to the plot. 

Continuing the analysis of Fig. 6.4, the optimal SINR (known covariance) for full dimension- 

ality was shown in Fig. 6.1 as 25 dB. The marked point in Fig. 6.4 represents 3 dB within this 

optimal SINR of 25 dB. As expected for the full dimension model, this point corresponds to a data 

set size of approximately twice the DOF, or 2 x 324 = 648. Therefore, approximately 650 secondary 

data vectors are needed to estimate the covariance matrix and retain performance within 3 dB of 

the optimal SINR. The Monte Carlo simulation results in the conclusion that Reed's rule holds for 

the CSM algorithm when using full dimensionality. 

The next step in the analysis is Monte Carlo experiments for reduced dimension CSM algo- 

rithms. However, in order to calculate LSINR we must first determine the optimum SINR (known 

covariance) for the reduced dimensions of interest. This calculation is required because the opti- 
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Monte Carlo Analysis for Pull Dimensionality 

m 3 
X) 

3 

1        1        1 1          1 1 i 1 i      i i      i 

.„..,.... 

i* 

,«>' 
-,,,v> 

/: ' 
^........ , 

3 dB of Optii] 

//     :    \' \ / 
- /:      :     ':   / 

num 

/» 
\ 
\ 

t         i/ 
. .y. . 

A 
\ 

/ \ /x':V > 
■ • -/v. ■ • • y.\ • • 

>• /  w :\   ' 
'\   ': ■■•■:•••- 

—  —  —              Std. Dev. 
  R&tio 

SINR 

i 

:   \ / 
V: 

i      ; 1                     i                     1 ;      I 

20 

PQ 

18  > 

Q 

16 

■- 14 

CO 

o 

es 

03 
- 12 JJ 

10 

I 
■8   pQ 

to    & 16   p 

CO 

400 500 600 700 800 900        1000       1100       1200       1300       1400 
J 

Figure 6.4 The LSINR curve versus secondary data set size for the full dimensioned 
CSM model. As expected for full dimensionality, it is approximately twice the DOF 
(2 x 324 = 648). 
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Optimum SINR Curve 

10 

73 15 

2 

i«q 20 - 

25 

30 

35 

25 

-20 

15 

- 10 

S 

CO 

-0 

10 20 30 40 50 
■WDOF 

60 70 80 90 100 
•10 

Figure 6.5 The optimum SINR curve (known covariance) versus weight vector 
dimension (A^DOF)- The SINR curve illustrates as few as 65 DOF are required to 
reach the maximum optimal SINR. 

mum SINR will experience roll-off as the dimension of the problem is reduced. Figure 6.5 presents 

the optimum SINR curve. 

Figure 6.5 is the reference needed to determine the LSINR resulting from using the interference 

plus noise covariance matrix estimate. The figure also gives insight into the reason behind reduced 

dimension STAP algorithms. The optimum SINR curve rapidly approaches the maximum SINR of 

25 dB with far fewer than MN DOF. In this example, the same interference plus noise covariance 

matrix is being used as in all previous examples. This covariance matrix corresponds to 18 x 18, or 

324 DOF. The iVDOF required to reach the maximum optimum SINR is approximately 65, much 

less than the full dimension of 324. 

Figure 6.6 is a plot of the experimental LSINR versus secondary data set size J for the partially 

adaptive CSM algorithm using 65 DOF. The solid line indicates the mean JDSINR for the 20 trials 
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Monte Carlo Analysis for 65 DOF 

Figure 6.6 The LSINR curve versus secondary data set size for the partial dimen- 
sion CSM algorithm using 65 DOF. The labeled point represents 3 dB of optimal 
SINR (25 dB). Contrary to Reed's analysis, the number of secondary data vectors 
required is greater than twice the DOF (2 x 65 = 130). This reduced dimension 
model requires 160 secondary data vectors to achieve 3 dB of optimal performance. 
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Monte Carlo Analysis for 45 DOF 

Figure 6.7 The LSINR curve versus secondary data set size for the partial dimen- 
sion CSM algorithm using 45 DOF. The labeled point represents 4 dB of optimal 
SINR (20 dB). Contrary to Reed's analysis, the curve does not reach 3 dB of opti- 
mal. This reduced dimension model requires 420 secondary data vectors or 9 times 
the DOF to achieve 4 dB of optimal. 

at each secondary data set size. The dashed line corresponds to the standard deviation of these 20 

trials. The data set size was increased in steps of 10. As before, the dash-dot line corresponds to 

the ratio of the mean SINR to the standard deviation. The ratio curve shown in the figure indicates 

the trial size of 20 was adequate for the simulation. 

The results of this Monte Carlo simulation indicate 160 secondary data vectors are required 

to achieve SINR performance within 3 dB of optimal. This performance differs from Reed's rule 

stating the secondary data support should be approximately twice the DOF. Using the 2ATD0F rule 

implies only 2 x 65 = 130 secondary data vectors are needed, resulting in the loss of approximately 

1 dB in SINR. The Monte Carlo simulation indicates approximately 2.5 secondary data vectors are 

required for operation within 3 dB of optimal. 
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Comparison of Experimental LSINR Curves 

Figure 6.8 Overlay of the LSINR curves for reduced dimensions below the dimen- 
sion of the interference subspace. Performance relative to optimal is reduced as the 
DOF are reduced. 

The next simulation reduces the DOF to 45. Fig. 6.5 shows the optimum SINR (known 

covariance) is now 20 dB. Therefore, the curve needs to converge to 17 dB. The Monte Carlo 

simulation in Fig. 6.7 shows the LSINR curve never reaches this point. To achieve within 4 dB of 

optimal SINR requires secondary data support of size 420. This translates to 420/45 « 9 times the 

DOF! 

Overlaying Monte Carlo simulation results for several different reduced dimensionalities shows 

the trend of interest. Figure 6.8 is a plot the experimental SINR Loss (LSINR) curves for reduced 

dimension applications with the DOF below the dimension of the interference subspace. Each 

curve has been referenced to the appropriate optimum SINR values from Fig. 6.5. The dimension 

of the interference subspace was determined through the use of two tools, the Singular Value 
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Decomposition (SVD) of the interference plus noise covariance matrix R and plots of the Cross 

Spectral Metric (CSM). 

A note about the curves in Fig. 6.8 is in order. The sharp drop-off each curve exhibits 

corresponds to the point where J is less than JVDOF- This drop-off occurs because the number 

of secondary data vectors used in the interference plus noise covariance matrix estimate R must 

be at least equal iVooF- This requirement is a result of the CSM algorithm using an eigenvalue 

decomposition to reduce the dimensionality of the problem. If only J secondary data vectors are 

used to estimate R and J < NBOF, then only the first J eigenvalues are nonzero. Referencing 

Eqn. (6.19), we see the inverse of Ao (the diagonal matrix of eigenvalues corresponding to the 

eigenvectors chosen by the CSM) is required. If there are only J nonzero eigenvalues, then Ao 

contains eigenvalues that are either equal to zero or very small. Therefore, the matrix is very close 

to singular and cannot be inverted, resulting in the sharp drop-off reflected in each LSINR curve 

shown in the graphs. 

Figure 6.9 shows the magnitude of the singular values and the CSM. The upper ledge 

represents the dimension of the interference subspace and the lower ledge is the noise (uncorre- 

lated/white). This plot reinforces the fact that it is the noise that makes R invertible. Without it, 

the rank of R is equal to the dimension of the interference subspace, which is less than MN. 

Figure 6.10 is simply an expanded view of Fig. 6.9. This allows a more accurate estimation 

of the dimension of the interference subspace. From the figure, the dimension is approximately 70. 

These two figures add considerable insight into the underlying architecture of the CSM algo- 

rithm. The model chooses the DOF that cancel the interference, not the noise, taking advantage 

of the statistical properties of the incoming data. Combining the knowledge gained from Figs. 6.9 

and 6.10 with Fig. 6.8 results in the prediction that iVooF should be equal to the dimension of 

the interference subspace for optimum performance in situations of unknown covariance, although 
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Singular Values of R 

75  100  125  150  175  200  225  250  275  300 
Singular Value Number/CSM Number 

Figure 6.9 Singular value and cross spectral metric magnitudes of the known 
interference plus noise covariance matrix. The singular values represent the power 
contained in the interference subspace. This figure illustrates the most power is 
contained in the clutter and jamming interference subspace. The noise subspace 
represents very little of the overall power. 
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Figure 6.10 Closer examination of the most significant singular values indicates 
the most power is contained in the first 70, a measure of the dimension of the 
interference subspace. This plot coincides with Fig. 6.5 in illustrating the DOF 
required to reach optimum is equal to the dimension of the interference subspace. 
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obviously determining the dimension of the interference subspace for real time operation is very 

expensive. 

Going back to the Monte Carlo analysis, Fig. 6.8 also shows an unexpected trend in the data. 

This trend is in direct conflict to Reed's rule. As iVboF is reduced, the required secondary data 

set size J to achieve a constant measure of the optimum performance increases. For example, 

performance within 3 dB of optimal is obtained with 160 secondary data vectors for 65 DOF while 

175 are required when the iVboF is reduced to 60. Further reduction of JVDOF results in SINR 

performance that does not reach 3 dB of optimal. Each experimental £SINR curve is referenced to 

the optimum SINR corresponding to iVboF- 

The figure also shows a distinct thresholding effect occurring when iVboF is decreased to 

values below 55. These curves are grouped together with all producing performance within 5 or 

6 dB of optimal using approximately the same number of secondary data vectors. These results 

contradict the primary goal of reducing the DOF to gain a corresponding decrease in secondary 

data support. 

Figure 6.11 overlays the experimental ZSINR curves for DOF above the dimension of the 

interference subspace. Again, the curves illustrate the sharp drop-off in performance when J is 

decreased below iVboF- Contrary to the overlay shown in Fig. 6.8, increasing the DOF does not 

increase the performance of the algorithm. Performance is significantly decreased when J is equal 

to MN, or 324. Maximum performance is again obtained when iVooF is equal to the dimension of 

the interference subspace. Note that once J is increased beyond MN, the curves converge to the 

same point. 

6.3.1 Hypothesis Behind Poor Performance. The Monte Carlo simulation has shown the 

performance of the CSM algorithm when estimating the covariance is maximized when ATDOF is 

equal to the dimension of the interference subspace. Both Figs. 6.8 and 6.11 support this statement. 

The poor performance of the algorithm when iVDoF is not equal to the dimension of the interference 
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Comparison of Experimental LSINR Curves 
T 

Figure 6.11 Overlay of the experimental SINR curves for reduced dimensions 
above the dimension of the interference subspace. Performance relative to optimal 
is reduced as the DOF are increased. 
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subspace is likely due to calculation noise in the eigenvalues of R. Small secondary data set sizes 

result in an estimated interference plus noise covariance matrix R of less than full rank. In the 

examples used, this statement is true for any secondary data set size less than 18 x 18, or 324. 

As corroborated by Fig. 6.9, the first 65 to 70 singular values are much larger than any 

subsequent singular values. The singular values are directly related to the eigenvalues [20], hence 

Fig. 6.9 gives appropriate insight. The largest eigenvalues are not affected as greatly by the varying 

secondary data set sizes. However, the smaller eigenvalues are greatly affected. 

Referencing Eqn. (4.71), the CSM is denned as 

Vi*hd 

\ft~i 
(6.26) 

where r-bd is the cross correlation between the vector b and the desired scalar d, U{ is the ith 

eigenvector, and A» is the corresponding eigenvalue. The eigenvalue error will be small relative to 

the magnitude of the largest eigenvalues, however the error is large relative to the small eigenvalues. 

This error in the small eigenvalues results in an inherent instability in the CSM algorithm 

when JVDOF is increased to include the DOF corresponding to small eigenvalues. The dimension of 

the interference subspace marks the point at which the eigenvalues become much smaller. A small 

change in secondary data set size can result in a drastically different 14, the dimension reducing 

matrix of eigenvectors. Remember, the eigenvectors comprising U are chosen according to the 

CSM. 

In the examples shown, the dimension of the interference subspace was approximately 65. 

This is exactly the point at which the performance of the CSM algorithm diminishes, as shown by 

Fig. 6.11. Once the secondary data set size J is increased beyond MN (324 in the examples) the 

performance begins to improve again. This is explained through an examination of the reduced 

dimension weight vector shown in Eqn. (6.19). 
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Let's continue the analysis by examining the performance of the LSINR curves in a manner 

from left to right or increasing J. When J < MN, there are only J nonzero eigenvalues because 

R (of dimension MN x MN) is not full rank. As long as JVDOF < J, Ao contains only large 

eigenvalues. The matrix is easily inverted. However, increasing iVooF beyond J forces Ao to 

contain eigenvalues that are very close to zero. Inverting this matrix is difficult and prone to errors. 

This is shown by the sharp drop-off each LSINR curve exhibits when J < iVboF- 

When NDOF 
1S equal to the dimension of the interference subspace, the LSINR performance is 

maximum. This is explained by again looking at the eigenvalues. If R was full rank, the eigenvalue 

decomposition would contain MN nonzero eigenvalues. However, since J is still less than MN, 

the matrix is not full rank and contains only J nonzero eigenvalues. The rest are either zero or 

very close to zero depending on the current random realization of R. These small eigenvalues 

create calculation noise in the CSM. When NBOF = J, the CSM algorithm is not forced to choose 

eigenvectors lying in the noise subspace and it gets to use all of the eigenvectors lying in the 

interference subspace. Hence, the performance of the algorithm is the best. 

Choosing J < MN and increasing NDOF such that it is larger than the dimension of the 

interference subspace forces the CSM algorithm to choose eigenvectors lying in the noise subspace. 

These eigenvectors are characterized by the extremely small eigenvalues. These eigenvalues then 

become a part of Ao- When this matrix is inverted, the small eigenvalues result in the interference 

estimate being larger than it should be and a corresponding increase in LSINR- The LSINR increases 

as iVooF increases because more of the small eigenvalues are becoming part of Ao and corrupting 

the interference estimate. This is shown by the results in Fig. 6.11. 

Once J has reached MN, the interference plus noise covariance matrix estimate R has reached 

full rank and none of the eigenvalues are zero, although errors still exist because of the small 

secondary data set size. The LSINR curves begin the expected progression to optimal performance 

as J is increased. 

6-25 



Eigenvector Ordering for U 
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Figure 6.12 The CSM ordering of the eigenvectors for a secondary data set size J 
equal to 323, one less than MN. The ordering is significantly different for estimated 
covariance, R. Changing J results in different ordering. The eigenvectors in the 
lower left corner lie in the interference subspace. 

There is still some question as to why the performance of the CSM algorithm experienced 

decreasing performance with iVboF below the dimension of the interference subspace. Figure 6.12 

gives insight into this problem. The figure represents the order in which the DOF are chosen by 

the CSM algorithm for two different scenarios. 

The first scenario assumes a known interference plus noise covariance matrix, R. These points 

can be considered the optimal ordering. The a;-axis is the order in which the eigenvectors are chosen 

and the y-axis is the original order they were in. For example, the first eigenvector or DOF in the 

optimal ordering was originally the second one. It's location on the plot is position (1,2). This 

means the second DOF has the greatest positive effect (according to the CSM) on the SINR than 

any of the other DOF. 

6-26 



The second scenario in the plot is for an estimated interference plus noise covariance matrix 

R. The data was generated in the same manner as in the Monte Carlo experiments, using the 

coloring process explained in that section. Only 323 secondary data vectors were used in this 

particular estimate. 

As Fig. 6.12 shows, the ordering when using R is drastically different. The first 65 eigenvectors 

are the same as indicated by the clustering in the lower left corner of the plot. However, the order 

they are chosen has changed. This cluster contains the eigenvectors that lie in the interference 

subspace. As long as NDOF is greater than 65, the ordering of these first data vectors doesn't 

matter because the algorithm is using all the vectors lying in the interference subspace. Decreasing 

iVüOF below 65 places emphasis on the ordering. This explains the decreased performance when 

NDOF is below the dimension of the interference subspace, shown by Fig. 6.8. 

6.4   Non-Homogeneities and the CSM Algorithm 

In Chapter V, the impact of non-homogeneities in the secondary data on the output of 

the Factored Time-Space (FTS) algorithm was explored in detail. The Generalized Inner Product 

(GIP) [14] was introduced in an effort to alleviate this impact. The GIP was shown, using MCARM 

data containing actual airborne radar measurements, to result in significant improvement in the 

output of the FTS algorithm. This improvement consisted of increasing the separation between 

the target peak and largest noise level. The chapter also explored the mathematical architecture 

behind the GIP non-homogeneity detector. 

In this chapter, an analysis of the CSM algorithm is being presented. The next logical step 

in this analysis is an examination of the effects of non-homogeneities in the secondary data on the 

CSM algorithm. 

The examination begins exactly as the Monte Carlo simulation for required secondary data 

support began. A Cholesky decomposition of the desired interference plus noise covariance matrix 
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R gives a method to color artificially generated white data. This method is explained in Section 6.3. 

The same R is used as in all previous examples. 

The simulation begins by generating one random realization of a CPI datacube through the 

coloring process explained in Section 6.3. Using this one realization for the three different cases 

of interest allows a direct comparison of the results. The three cases of interest include operating 

the CSM algorithm on data with only a target, data with a target and one non-homogeneity, 

and the CSM algorithm with GIP non-homogeneity detection on data with a target and one non- 

homogeneity. The purpose of this section is not to generate a Monte Carlo simulation. The analysis 

only requires generation of one set of data to determine the effects of non-homogeneities. 

With this goal in mind, a single target was placed in the CPI datacube. This target was 

placed at range cell (I) 100. To simulate a non-homogeneity in the secondary data, a second target 

was placed at range cell 50. This second target is identical to the first, with the exception of the 

range cell location. 

This non-homogeneity is a worst case scenario for the CSM algorithm. It represents worst 

case because the non-homogeneity is the same angle and Doppler as the desired target/steering 

vector. The CSM algorithm cannot filter any of it out. The gains seen here are due solely to the 

use of the GIP detection scheme. 

Figure 6.13 illustrates the output of the CSM algorithm both with and without the non- 

homogeneity in the data. The interference plus noise covariance matrix estimate R was found 

using a symmetric window of secondary data vectors about the range cell of interest. The CSM 

algorithm was programmed to use 45 DOF and 200 secondary data vectors. The choice of 200 

secondary data vectors was made by referencing Fig. 6.8. This choice of secondary data support 

should give performance within approximately 5 dB of optimal according to the Monte Carlo 

simulations. Of course, choosing 65 DOF results in better performance (within « 2 dB of optimal 

SINR). 
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Impact of Non-Homogeneity in Secondary Data 

Figure 6.13 The impact of non-homogeneities in the secondary data on the CSM 
algorithm. This example shows the results of inserting a target in range cell 50 
identical to desired target at range cell 100. The CSM algorithm utilizes 45 DOF 
and R is built with 200 symmetric secondary data vectors. 
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Non-Homogeneity Detection 

Figure 6.14 The impact of using the GIP non-homogeneity detector with the 
CSM algorithm. The curve is the output of the CSM algorithm using 45 DOF and 
200 secondary data vectors. 

The output of the CSM algorithm clearly shows the target at range cell 100. The non- 

homogeneity has not been inserted into the data resulting in acceptable performance when using a 

symmetric window of secondary data vectors. However, introducing the non-homogeneity degrades 

the performance of the algorithm. This is shown by the second curve in the graph. The separation 

from target peak to next highest peak has been reduced by approximately 3 dB. Since this output 

is typically threshold detected, this is a significant decrease. 

Figure 6.14 illustrates the positive impact the GD? non-homogeneity detector has on the CSM 

algorithm. The separation between target and next highest peak has been increased from 5 dB to 

8 dB. This is an improvement of 60%. Simply out of curiosity, the experiment was repeated after 

modifying the CSM algorithm to make use of 65 DOF. 
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Non-Homogeneity Detection 

Figure 6.15 The impact of using the GIP Non-Homogeneity detector with the 
CSM algorithm. The curve is the output of the CSM algorithm using 65 DOF and 
200 secondary data vectors. 

Figure 6.15 shows the results of this second experiment. Clearly, the GIP non-homogeneity 

detector is a significant improvement. The separation between target and next highest peak has 

increased from 4 dB to 7 dB. An increase of 75%. 

There is one major limitation of the GD?. It requires the inverse of a covariance matrix 

estimate based on the full secondary data set, R,. To do the inverse, R, must be full rank. This 

is a limiting factor when using the GIP. The CSM algorithm requires the estimation of a full 

dimensioned R, MN x MN. Hence, RÄ is also MN x MN. This translates to a secondary data 

support requirement of at least MN vectors for implementation of the GIP detection scheme. This 

is in direct conflict to the primary goal of reducing secondary data support. For the experiments in 

this section, the secondary data set size was increased to 324 data vectors to ensure the invertibility 
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of Rä. Symmetric windowing used 200 secondary data vectors symmetric about the range cell of 

interest while the GIP detection equipped algorithm used the 200 most homogeneous secondary 

data vectors. 

6.5   Summary 

The analysis performed in this chapter has uncovered several interesting pieces of information 

regarding the CSM algorithm. Expressions for the SINR were developed for both full and reduced 

dimension cases. Plots of these expressions using known covariance served to gain insight into 

the operation of the CSM algorithm. Similar plots (Chapter III) for the FTS algorithm allowed 

comparison between the algorithms. 

As mentioned previously, the CSM algorithm requires the estimation of a full dimensioned 

interference plus noise covariance matrix. There is no gain over the original fully adaptive model 

in this respect. Furthermore, the eigenvalue/eigenvector decomposition of this matrix must be 

performed. Obviously, this algorithm does not enjoy the benefits of working in smaller dimensions 

such as FTS does. Calculation times are much greater for this algorithm than for FTS. For this 

reason, the CSM algorithm will likely remain a theoretical tool. 

Although the CSM algorithm is computationally expensive, it does give optimum performance 

when the dimension reducing matrix is composed of eigenvectors. This was shown in Chapter IV. 

The point to remember is the dimension reducing matrix does not have to be composed of eigen- 

vectors. There may be another matrix that gives better SINR performance. 

The eigenvalue/eigenvector decomposition of R in the CSM algorithm brought into question 

the validity of Reed's rule. In an effort to answer this question of required sample support, a 

Monte Carlo analysis was performed. This analysis showed Reed's rule does hold when the CSM 

algorithm is fully adaptive. However, the rule does not hold when JVDOF is reduced below MN 

(fully adaptive). 
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The required secondary data support is related to the dimension of the interference subspace. 

The Monte Carlo analysis showed NDOF should be equal to the dimension of the interference 

subspace for optimal SINR performance. For the interference plus noise covariance matrix used 

in this experiment, the number of required secondary data vectors should be set to approximately 

2.5A^DOF- 

As a final point of interest, the GIP non-homogeneity detector was introduced into the CSM 

algorithm. A worst case situation was used in that the non-homogeneity inserted into the data 

was comprised of a duplicate target in another range cell. This represents worst case because the 

non-homogeneity does not lie in the interference subspace. The CSM algorithm cannot filter it 

out. The GIP non-homogeneity detector was shown to significantly improve the performance of 

the algorithm in this case. 

The most significant problem with implementing the GIP non-homogeneity detector is the 

requirement of a fully ranked covariance estimate based on the entire secondary data set. This 

requirement conflicts with the goal of reducing the necessary secondary data support. Using the 

GIP detection scheme with the CSM algorithm requires a minimum of MN secondary data vectors. 
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VII.   Conclusions and Recommendations 

7.1    Conclusions 

One of the significant design considerations for any STAP algorithm is the required secondary 

data support. For an SMI algorithm, Reed found the required secondary data support as a function 

of the number of DOF [15] used in the adaptive algorithm. Through an exhaustive derivation based 

on the probability of detection PD, Reed determined this support as approximately 2iV*DOF- A 

Monte Carlo simulation was used to experimentally determine the required secondary data support 

for the CSM algorithm. 

It is interesting to relate Reed's rule to the physical size of the interference plus noise covari- 

ance matrix estimate R. For SMI techniques, this sample matrix is immediately inverted to obtain 

the adaptive weight vector. Hence, it's dimension is iVboF X -NDOF- The number of secondary data 

vectors used to form the estimate must be at least iVboF or the matrix is singular and cannot be 

inverted. Using 2iVboF secondary data vectors ensures that not only is the matrix invertible or 

non-singular but also that performance of the STAP algorithm is within 3 dB of optimal SINR. 

The CSM algorithm uses the eigenvalue/eigenvector decomposition of a full dimensioned R to 

choose iVboF out °f a tota,l °^ MN DOF. Correct determination of the eigenvalues and eigenvectors 

for the interference and noise subspaces require a full rank R. However, applying Reed's rule typ- 

ically results in R being less than full rank. This introduces noise into the eigenvalue/eigenvector 

decomposition. This calculation noise compromises the ability of the algorithm to correctly deter- 

mine the optimal DOF by corrupting the metric used to rank order the DOF. 

The problem can be alleviated through a careful choice of iVboF- Setting this value equal 

to the dimension of the interference subspace minimizes the impact of the calculation noise in 

the eigenvalue/eigenvector decomposition. The minimization occurs because the calculation errors 

in the eigenvalue/eigenvector decomposition have greater effect on the DOF corresponding to the 

noise subspace than those in the interference subspace.  The greater effect is due to the smaller 
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eigenvalues associated with the eigenvectors spanning the noise subspace. Since their magnitude 

is smaller, the relative error is much larger. By choosing the DOF where the error has the least 

impact, the efficiency of the algorithm is optimized. 

Decreasing iVboF below the dimension of the interference subspace results in a corresponding 

decrease in SINR performance. This decrease in performance occurs as a result of the errors in 

these eigenvalues. Although the relative error is small when compared to the magnitude of the 

eigenvalue, it is enough to drastically change the order in which the DOF are chosen. Since NBOF 

is now smaller than the dimension of the interference subspace, the order has become important. 

There is a corresponding decrease in performance. 

Increasing ivboF above the dimension of the interference subspace also results in a decrease 

in SINR performance. However, the algorithm does converge to optimal as secondary data set size 

increases. The most peculiar behavior occurs when the secondary data set size approaches MN, 

the full rank of R. There is a large drop in SINR with a minimum occurring at a secondary data 

set size J of MN — 1. When J increases beyond MN the curve resumes the expected upward slope 

towards optimal SINR. 

The main result of this work is to choose iVboF equal to the dimension of the interference 

subspace. Obtaining performance within 3 dB of optimal SINR then requires 2.5iV"DOF secondary 

data vectors. Reed's rule of 2iVboF was found to only apply in the case of full dimensionality. The 

problem with this approach is obtaining an accurate estimate of the interference subspace dimen- 

sion. An accurate estimate by use of the eigenvalues or singular values requires more secondary 

data vectors than that needed to reach the desired SINR performance. A method of determining 

interference subspace dimension by other means is needed. Brennan's rule should be considered for 

this application. 

As a second goal, a brief analysis of non-homogeneities in the secondary data was performed. 

A worse case scenario for the CSM algorithm was used in that the non-homogeneity introduced into 
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the secondary data was identical to the desired target in angle and Doppler. The non-homogeneity 

only differed in range. This represents worst case because the blocking matrix B used by the CSM 

algorithm does not allow this signal to become part of the interference plus noise estimate. 

The CSM algorithm was found to be susceptible to the single non-homogeneity in the sec- 

ondary data. The difference between the target peak and the next highest peak in the algorithm's 

output was reduced by approximately 3 dB. Introducing more non-homogeneities in the data would 

typically result in even less separation. 

Through the use of the GIP non-homogeneity detector, the separation between target and next 

highest peak was increased by 3 dB. This effectively negates the impact of the non-homogeneity. 

The GIP works very well with the CSM algorithm in this situation. 

7.2   Recommendations for Future Research 

As mentioned in Chapter IV, the dimension reducing projection matrix U in the CSM al- 

gorithm does not have to be comprised of eigenvectors. The CSM algorithm provides maximum 

SINR only for the case when eigenvectors are used to construct this projection matrix. 

An excellent opportunity for future research is development of a different projection matrix. 

The STAP formulation should be kept in the GSC architecture because it offers excellent visual- 

ization of the overall process. It also presents a good analogy to the Wiener filter. Avoiding the 

eigenvalue/eigenvector decomposition would result in several advantages. 

If a constant projection matrix can be denned, the calculation costs of a decomposition can 

be avoided. This cost is a very important consideration if the algorithm were to be considered for 

real time implementation. 

A second advantage to a constant projection matrix is secondary data support. Avoiding the 

decomposition of the full dimensioned covariance matrix would allow the algorithm to fall under 

the SMI umbrella. Hence, Reed's rule would apply. 
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The major drawback to a constant projection matrix is it is no longer adaptive. The same 

DOF will be chosen regardless of the interference environment the algorithm is placed in. Although 

the algorithm as a whole will remain adaptive due to the reliance on the interference plus noise 

covariance estimate, the DOF chosen will not result in optimal performance. For this reason, 

a constant projection matrix may not be feasible. However, it is important to consider that a 

constant projection matrix forming a basis for likely interference scenarios might produce acceptable 

performance, albeit sub-optimal performance. The gains in calculation cost and secondary data 

support from avoiding a decomposition might far outweigh the loss in performance. 

A second area of future research involves examining Brennan's rule as a method to predict 

the interference subspace dimension. The current method of determining this dimension involves 

the use of either the eigenvalues or the singular values. These methods typically require a greater 

number of secondary data vectors than that required to meet the desired SINE, performance. If 

Brennan's rule gives a sufficiently accurate estimate, the algorithm could be optimized without a 

penalty in secondary data support. 

Another potential area for research is the GIP non-homogeneity detector. As mentioned 

previously, the major drawback to this method is the inverse of a covariance matrix estimate Rs 

based on the full secondary data set. Performing the inverse requires the estimate R, be full 

rank. This full rank requirement then translates to a corresponding requirement of secondary 

data support. In the case of the CSM algorithm, choosing iVboF equal to the dimension of the 

interference subspace means only 2.5iVDOF secondary data vectors are required. However, because 

Rs is estimated from full dimensioned space-time snapshots there are at least MN secondary data 

vectors required to ensure it is invertible. Typically, 2.5iVboF < MN. A new method of detecting 

and excising non-homogeneities would alleviate this problem of secondary data support. 
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Appendix A.  Kronecker Product 

The Kronecker Product is simple in concept. Given two matrices A and B, the Kronecker Product 

is defined in the following manner [9], 

A®B = 

J4HB    A12B    A13B    ■■■    AiMB 

A21B    A22B    A23B    • • •    A%MB 

ANIB   AN2B   ANSB   • ■ •    ANMB 

(A.1) 

Therefore, given an N x M matrix A and P xQ matrix B results in an NP x MQ matrix. 

The following table of identities holds for Kronecker products. 

Table A.l     Properties of Kronecker Products 

1. (A + B)®C = A®C + B<g)C 

2. (A ® B) ® C = A ® (B ® C) 

3. a(A ® B) = (aA) <g> B) = A ® (aB) 

4. (A ® B)T = AT ® BT 

5. (A®B)"1 = A-1®B-1 

6. (A ® B)(C ® D) = (AC) ® (B ® D) 

7. (A ® B) = (A ® I)(I ® B) 
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Appendix B.   CSM Blocking Matrix Determination 

Two simple methods for computing the signal blocking matrix are the singular value decomposition 

algorithm and the QR decomposition algorithm [7]. The singular value decomposition of a matrix 

A produces 

A = USVH, (B.l) 

where the matrices U and V are unitary and S is diagonal. The left and right singular vectors 

are contained in U and V, respectively. If the input matrix A is of dimension P x C, then U is 

P x P, V is C x C, and S is a diagonal P xC matrix of the singular values. Note that regardless 

of whether the input matrix is real or complex, the nonzero singular values are always real and 

positive. An excellent discussion of the singular value decomposition is contained in [20]. 

Using these definitions, the singular value decomposition of the complex conjugate transposed 

steering vector (dimension 1 x NM) is 

sH = USVff, (B.2) 

where U is 1 x 1, S is 1 x NM, and V is NM x NM. Taking the hermitian of both sides results 

in 

s = VSUff. (B.3) 

If we choose the blocking matrix such that 

B = V(:,2:NM)H, (B.4) 
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where the notation used is MATLAB® notation for taking all the rows of the matrix and columns 

2 through NM, then the product of the blocking matrix and steering vector is 

HWTTH Bs = V(:,2 : NM)aWV (B.5) 

Let's examine product of the reduced and full dimension right singular vector matrices. First 

express them in terms of the right singular vectors themselves, 

V(:,2:NM)HV = 

vf 

v3* 

fNM 

Vl      V2 VJVM 

0        0 

0   IJVM-I 

(B.6) 

where the last step takes advantage of the orthonormal columns of V. 

Since the input matrix to the singular value decomposition is actually a row vector, there will 

be only one singular value for the decomposition of sH, i.e. 

S = o-i    0   •••    0 (B.7) 

Recognizing this fact and substituting Eqn. (B.6) into Eqn. (B.5) results in 

Bs = 
0        0 

0     IjVM-l 

SUff = 0 

the desired result. 

(B.8) 
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The second method mentioned by Goldstein is the QR decomposition. This decomposition 

produces 

A = QR, (B.9) 

where Q is P x P and R is an upper triangular matrix of dimension P xC given A is P x C. The 

elements of R are given by [20] 

r« = qfaj, (B.10) 

where q, and a,- are the columns of Q and A, respectively. 

The matrix Q is calculated using the Gram-Schmidt orthogonalization process, hence the 

columns of Q are orthonormal and the matrix is termed orthogonal. The orthogonalization process 

produces a set of vectors that when taken as a whole represent the subspace spanned by the input 

matrix. 

The QR decomposition of the steering vector is 

s = QR, (B.ll) 

where Q is NM x NM and R is NM x 1. The only nonzero element contained in R is the first 

element. Therefore, choosing the blocking matrix as 

B = Q(:, 2:: NM)H (B.12) 

results in Bs = 0 as desired. This can be shown in the exact same manner as that done for the 

singular value decomposition. 
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Appendix C.  Performance Measures 

The main goal of the radar is to detect the target amid noise, interference, and jamming. Target 

detection is a binary decision, either a target is present or there is not. Therefore, one of the 

obvious metrics for algorithm comparison is the decision test. This section addresses several of the 

common test statistics used for the binary detection problem, beginning with the one developed by 

Brennan and Reed in their pivotal paper [2]. Then the discussion transitions to two test statistics 

offering the desirable constant false alarm rate (CFAR) characteristic. 

C.l   RMB Test 

Continuing exactly as in Brennan and Reed's earlier work [2], the radar is cast in the light of 

a binary hypothesis problem. Either there is a target in the data and the hypothesis is Hi or there 

is not and the hypothesis is HQ. The data models are expressed by 

Ho-   Xi=   n 

Hi :    Xi =   ces + n, (C.l) 

where n is the colored noise with associated covariance matrix estimate Rj, s is the normalized 

steering vector, and a is a random complex coefficient whose phase <f> is uniformly distributed 

between 0 and 2ir. The subscripted I emphasizes the fact that the data vector under consideration 

corresponds to a particular range cell. This is the exact same method used by Reed to develop 

the adaptive processor weights that maximized the probability of detection and subsequently the 

SNR [2] (introduced in Section 4.2). 
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Under these hypotheses and given complex Gaussian noise, the probability density functions 

of the incoming data vector Xi conditioned on the random phase of the target steering vector are 

f   .„  ,    =     \ e-(x,-a.)HArl(x,-a.) 
IxiWu* 7r™det(R,) 

'*"•■* = isd®?**^ (c-2) 

where N is the number of spatial degrees of freedom and M is the number of temporal degrees of 

freedom such that the steering vectors a and b are N x 1 and M x 1 respectively. This produces 

a space-time steering vector, v or s, of size NM x 1. The likelihood ratio test then becomes, 

A   _ £{fx,\Hu4>}  % n ,r - Al    TU \ H° '&> (°-3^ & Wxilffo.tfJ 

where £ is the expected value operator with respect to the density of the random phase p(<j>), and 

77 is the threshold. Using the densities given above, the likelihood ratio test is 

Hi 

Ax = I0 (2|a||sffRJ-
1xJ|) e-lalvftr1- |0 ,,, (C.4) 

where I0(x) is the modified Bessel function of the first kind. This is a Bayes optimal test. Isolating 

the signal power expression on the left side results in the Reed, Mallett, and Brennan (RMB) 

test [2], 

Hi 

Ax = is^Rr^r ^c 
/; -1 ^HVftri.) 

2|a| 
= Vi- (C.5) 

Since the new threshold is a function of the covariance matrix and incoming data, it cannot be 

determined beforehand to achieve a specified false alarm probability. Hence, the test is not CFAR 

and is not practical for use as a test statistic. 
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C.2   GLRT Test 

The Generalized Likelihood Ratio Test (GLRT) was developed by Kelly in a paper on adaptive 

detection [13]. The test is given by 

A2 =     „.   ,   'r     '   *'L   ,     i A 2^2, (C.6) 
(B*Kr1B)[l + ±(X?nr1Xi) 

where Rj represents the interference covariance matrix estimate, Xi the primary data vector, s the 

steering vector, and 27 is the number of secondary data vectors used to calculate the covariance 

matrix estimate. Kelly shows this test does in fact possess the generalized CFAR property via the 

normalization by the signal dependent quantity in the denominator. 

C.3   AMF CFAR Test 

The final CFAR test under discussion is one introduced just recently (1991) by Chen. The 

adaptive matched filter CFAR (AMF CFAR) test [4] is 

A3 = ' .„i-Z    & *• (0-7) 

This test statistic has also been referred to as the iVMSMi test statistic in articles by Melvin. Because 

the test provides a constant threshold that is a function of the probability of false alarm, it has an 

embedded CFAR characteristic. This is the source of the name. 

The relationship between the threshold and PFA is given by [4] 

PFA = e-"3, (C.8) 

where % is the threshold. 

This test was developed by Chen and Reed as an improvement of the GLRT test. 
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AMF CFAR test, see threshold detection, 
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Applebaum, 4-5 

beamforming, 2-4, 2-7, 2-12, 3-2, 5-8 

adaptive, see adaptive processing 

element weighting, 2-9 

example, 2-15 

use of windows, see windowing 

weighted delay and sum, 2-9, 2-13 

Bessel function, C-2 

Index 
Bessel function, zero-order, 4-2 

Blackman Harris window, 3-42 
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specifications, 5-8 

blocking matrix (B), 4-6 

calculation of, B-l 

Boltzman's constant (k), 3-36 

Brennan's rule, 3-29 

example of, 3-38 

clutter 

covariance, see covariance matrix (R) 

model, see STAP, model, clutter 

patch, 3-22 

ridge, 3-27 

slope (ß), 3-28 

Clutter-to-Noise Ratio (CNR), 3-24; 3-25 

example of, 3-32 

Coherent Processing Interval (CPI), 3-4, 3-12 

Constant False Alarm Rate (CFAR), 5-13, C- 

1, C-3 
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STAP model, 3-3 

covariance matrix (R) 

estimation, 5-2 
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of all undesired components, 3-40 

of clutter, 3-26 

rank of, 3-29 

of jammer, 3-18 

rank of, 3-20 

of noise, 3-14 

Cross Spectral Metric (CSM), 4-27 

Cross Spectral Metric (CSM) model, 4-27, see 

Generalized Sidelobe Canceler (GSC) 

analysis of, 6-1 

datacube, see Coherent Processing Interval 

(CPI) 

DFT matrix (as used in Doppler filter), 3-51 
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ambiguous, concept of, 3-28 

filter, 5-8 

in FTS, see Factored Time-Space (FTS) 

normalized (<D), 3-6 

of clutter, 3-23 

shift due to target (ft), 3-6, 3-10 
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Factored Time-Space (FTS), 3-50 

Doppler filter associated with, 3-50 

example using MC ARM data, 5-10 

MCARM example using 

non-homogeneity detection, 5-15 

output (zm), 3-52 

weight vector (wm), 3-52 

windowing, 3-51 

Fourier Transform, 2-3, 3-15 
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frequency 

spatial (0), 2-2, 2-5, 2-12, 3-8, 3-11, 3-28 

of clutter, 3-23 

temporal (/), 2-2, 2-5, 2-10 

Generalized Inner Product (GIP), 5-5 
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blocking matrix (B), 4-6 

calculation of, B-l 
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block diagram, 4-9, 4-13 

model, 4-5 
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weight vector (wj,), 4-10 
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projection matrix, 4-13 
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GLRT test, see threshold detection, GLRT 
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Maximum Likelihood Estimation (MLE), see 
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Monte Carlo simulation, 6-1, 6-11 

noise covariance, see covariance matrix (R) 
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), 3-14 
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detection of, 5-4 

plane wave, 2-1 

frequency spectrum of, 2-3 
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method of, 4-15 

probability of detection, 4-2 

maximized, 4-2 

probability of false alarm, 4-1, 5-13, C-3 

propagation velocity (vp), 2-5, 2-8, 2-10, 3-7 

Pulse Repetition Interval (PRI), 3-4 

Q-function, 4-2 

QR decomposition, B-3 

Radar Cross Section (RCS) 

of clutter patch, 3-25 

receiver losses (Lr), 3-18 

Reed's rule, 5-3 

in CSM algorithm, 6-1, 6-9, 6-11, 6-13, 

6-17, 6-22 

RMB test, see threshold detection, RMB test 

Sample Matrix Inversion (SMI), 5-3, 6-1 
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sampling 

of clutter, 3-31 

spatial, 2-6 

temporal, 2-7, 3-9 

secondary data, 5-2, 5-13 

analysis of required support, 6-9, 6-22 

Singular Value Decomposition (SVD), 6-19, 

B-l 

SINR, 3-41 

for CSM algorithm 

fully adaptive, 6-2 

partially adaptive, 6-6 

for FTS, 3-53 

for tapered fully adaptive STAP, 3-42 

maximized, 3-40 

optimum (fully adaptive STAP), 3-41 

using interference covariance matrix esti- 

mate (R), 5-3 

SINR Loss (LSINR), 3-43, 3-53 

slowness vector (a), 2-2 

SNR 

loss due to interference covariance matrix 

estimation, 5-3 

obtaining maximum, 4-3, 4-5 

optimum, 3-44 

Space-Time Adaptive Processing, see STAP 

space-time signal, 2-4, 2-13, 2-14 

superposition of plane waves, 2-4 

space-time snapshot (x), 3-12 

in clutter model, 3-24 

in jammer model, 3-17 

in noise model, 3-14 

space-time steering vector, see steering vector 

spatial frequency, see frequency, spatial 

STAP, 3-1 

block diagram, 3-44 

CSM model, see Generalized Sidelobe 

Canceler (GSC) 

FTS, see factored time-space (FTS) 

fully adaptive, 3-38 

weight vector (w), 3-40 

GSC form, see Generalized Sidelobe 

Canceler (GSC) 

model 

clutter, 3-21 

electromagnetic environment, 3-2, 3-4 

jamming, 3-14 

physical environment, 3-2 

thermal noise, 3-13 

steering vector 

in jammer model, 3-16, 3-20 
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space-time (v), 3-11 

spatial (a), 3-10 

temporal (b), 3-11 

temporal frequency, see frequency, temporal 

threshold detection 

AMF CFAR test, C-3 

GLRT test, C-3 

RMB test, C-2 

wavelength (A), 2-2, 2-10 

wavenumber vector (k), 2-3 

wavenumber-frequency space, 2-3, 2-4 

weight vector (w) 

describing entire CSM algorithm 

fully adaptive, 6-3 

partially adaptive, 6-7 

tapered, 3-40 

whitening filter, 5-6 

windowing, 2-17 

Blackman Harris, see Blackman Harris 

window 

Hamming, see Hamming window 

Hanning, see Hanning window 

in Doppler filter, 3-51 
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